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Introduction 
The finite, simple and undirected graphs are only consideration in this study. We are denoting vertex and edge sets of a graph 
G by V(G) and E(G) respectively. The definitions and theory we are mentioning first are directly important in the 
presentation of our work. Primarily, a (p, q)-graph G is a graph having |V (G)| = p and |E(G)| = q. A (p, q)-graph G is said to 

admit an edge-magic labeling if it admits a bijection δ: V (G) ∪ E(G) → {1, 2, . . . , p+q} such that δ(x) + δ(xy)+ δ(y) = c is a 

constant, for each edge xy ∈ E(G). An edge-magic labeling of G becomes super edge-magic if it has the additional 

characteristic that δ(V (G)) = {1, 2, . . . , p}. A graph that admits a super edge-magic labeling is said to be super edge-magic. 
The credit of these concepts goes to Hikoe Enomoto et al [5]. G. S. Bloom and S. W. Golomb studied applications of graph 
labeling to various branches of science in their articles, some of their discussions can be seen in [3, 4].  
 
Figueroa-Centeno et al. [8] showed that if G is a super edge-magic bipartite or tripartite graph, then for odd m, mG is super 
edge-magic. In [5] H. Enomoto et al. proved a complete bipartite graph Km,n to be super edge-magic if and only if m = 1 or n 

= 1. In [8] it is proved that K1,m ∪K1,n is super edge-magic if either m  is a multiple of n + 1 or n is a multiple m + 1. H. 

Enomoto et al. [5] proved that Cn is super edge-magic if and only if n is odd. C3 ∪ Cn is super edge-magic [11] if and only if n 

≥ 6 and n is even (also see [10]). Graph theorists are still working on this famous conjecture. In [5] H. Enomoto et al. showed 
that the generalized prism C2m+1 × Pm is super edge-magic for every positive integer m (also see [6]).  
 
Lemma 1. [6] A (p, q)-graph G is super edge-magic if and only if there exists a bijective function δ : V(G) → {1, 2, · · · , p} 

such that the set S = {δ(x) +δ(y)| xy ∈ E(G)} consists of q consecutive integers. In such a case, δ extends to a super edge-

magic labeling of G with magic constant c = p +q +s, where s = min (S) and S = {c − (p + 1), c − (p + 2), . . . , c − (p + q)}. 
 
Moving forward, if one studies [1] and [2], the following concepts can be seen.  An additive numbering of a graph G = (V, E) 
is an injective additive vertex function f such that the induced edge function f + is also injective. A graph G for which θ(G) = 
|V(G)− 1| is said to be indexable and any minimal numbering of such a graph will be called an indexer. An additive 
numbering f of a (p, q)-graph G will be called a strong indexer if f(G) = {0, 1, 2, . . ., p − 1} and f +(G) = {1, 2, . . . ,q}. If G 
admits such a numbering it is called strongly indexable.  
 
A (p, q)-graph G is said to be strongly k- indexable if its vertices can be assigned distinct integers 0, 1, 2, . . . ,p − 1 so that the 
values of the edges, obtained as the sums of the numbers assigned to their end vertices can be arranged as an arithmetic 
progression k, k + 1, k + 2, . . . , k + (q − 1). A (p, q)-graph G is said to be (k, d)-arithmetic if its vertices can be assigned 
distinct nonnegative integers so that the values of the edges, obtained as the sums of the numbers assigned to their end 
vertices, can be arranged in the arithmetic progression k, k + d, k + 2d...., k + (q − 1)d. Concluding the introductory 
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discussion, we are mainly going to present here some well designed infinite lattices and term them as M1, M2, M3 and M4 and 
focus on presenting their k-indexability. 
 
Main Results 

The following theorems present our main working, definition and results.  
 

Theorem 1. The infinite lattice M1 is strongly 3- indexable for all possible value of m.  
 

Proof. We define first the infinite lattice M1 with following vertex and edge sets, 
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Then mMVp 6|)(| 1  and )14(3|)(| 1  mMEq . We are defining a bijective function on M1 as  
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 The edge-sums generated by the above scheme form a sequence of consecutive integers .112,...,4,3 m  Thus with 

appropriate edge- labels (assigned in an opposite order) f  refers that M1 is strongly k-indexable for k=3. 
 
Theorem 2. The infinite lattice M2 is strongly 3- indexable for all possible value of m. 
 
Proof. We define first the infinite lattice M2 with following vertex and edge sets, 
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Then mMVp 8|)(| 2  and 316|)(| 2  mMEq . We are defining a bijection on M2 as  
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The edge-sums generated by the above scheme form a sequence of consecutive integers .112,...,4,3 m   Thus with 

appropriate edge- labels (assigned in an opposite order) g  refers that M2 is strongly k-indexable for k=3. 
 

Theorem 3. The infinite lattice M3 is strongly 3- indexable for all possible value of m. 
 
Proof. We define first the infinite lattice M3 with following vertex and edge sets, 
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Then 410|)(| 3  mMVp and 1120|)(| 3  mMEq . We are defining a bijection on M3 as  
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The edge-sums generated by the above scheme form a sequence of consecutive integers .920,...,4,3 m   Thus with 

appropriate edge- labels (assigned in reverse order) h  refers that M3 is strongly 3-indexable. 
 

 

Theorem 4. The infinite lattice M4 is strongly 3- indexable for all possible value of m. 
 
 

Proof. We define the infinite lattice M4 with following vertex and edge sets, 
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The edge-sums generated by the above scheme form a sequence of consecutive integers ).12(12,...,4,3 m   Thus with 

appropriate edge- labels (assigned in reverse order) l  refers that M4 is strongly 3-indexable. 
 

Conclusion 

A (p, q)-graph G is said to be strongly k- indexable if its vertices can be assigned distinct integers 0, 1, 2, . . . ,p − 1 so that the 
values of the edges, obtained as the sums of the numbers assigned to their end vertices can be arranged as an arithmetic 
progression k, k + 1, k + 2, . . . , k + (q − 1). In the present article, we have discussed strong k - indexability of lattices M1, M2, 
M3, M4 for k= 3, and for rest of the possible values, it is open for others. 
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