Vol. 8. No. 1. 2019
©Copyright by CRDEEP Journals. All Rights Reserved.
Contents available at:
www.crdeepjournal.org

International Journal of Basic and Applied Sciences (ISSN: 2277-1921)

Full Length Research Paper

A Note on Magic Sum of Dijoint Union of Graphs

H. U. Afzal
Department of Mathematics, GC University, Lahore-54000, Pakistan.

ARTICLE INFORMATION

Corresponding Author:
H. U Afzal

Article history:

Received: 01-12-2018
Revised: 10-12-2018
Accepted: 10-01-2019
Published: 29-01-2019

Abstract

In 1998, Hikoe Enomoto et al. defined the concept of super edge-magic labelling of graphs which has played very important part in discrete mathematics apart from its many technological, mathematical and chemical applications now a day. The present articles also covers the techniques of obtaining super edge-magic sum mainly of some disjoint union of graphs.

AMS 2010 MATHEMATICS SUBJECT CLASSIFICATION: 05C78, 05C80

Key words:

Magic sum, cycle, forest, prism, Rural Development.

Introduction

Our main working rests around finite, simple and undirected graphs. We are denoting vertex and edge sets of a graph G by $V(G)$ and $E(G)$ respectively. The (p, q)-graph G is a graph having $|V(G)|=p$ and $|E(G)|=q$. A (p, q)-graph G is said to admit an edge-magic labeling if it admits a bijection $\delta: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, p+q\}$ such that $\delta(x)+\delta(x y)+\delta(y)=c$ is a constant (called magic sum of G under δ), for each edge $x y \in E(G)$. An edge-magic labeling of G becomes super edge-magic if it has the additional characteristic that $\delta(V(G))=\{1,2, \ldots, p\}$. A graph that admits a super edge-magic labeling is said to be super edgemagic. Graph labeling has caught attention of many mathematicians which is not only due to mathematical problems that are being called into question in order to obtain accuracy in this area, but also for its wide application in astronomy, coding, circuit and network designing. Long ago, G. S. Bloom and S. W. Golomb studied applications of graph labeling to various branches of science in their articles, some of their discussions can be seen in [1, 2].
Primarily, H. Enomoto et al. [3] gave the idea of super edgemagic labeling of graphs. Figueroa-Centeno et al. [6] showed that if G is a super edge-magic bipartite or tripartite graph, then for odd $m, m G$ is super edge-magic. In [3] H. Enomoto et al. proved a complete bipartite graph $K_{m, n}$ to be super edge-magic if and only if $m=1$ or $n=1$. In [6] it is proved that $K_{l, m} U K_{l, n}$ is super edge-magic if either m is a multiple of $n+1$ or n is a
multiple $m+1$. H. Enomoto et al. [3] proved that C_{n} is super edge-magic if and only if n is odd. $C_{3} \cup C_{n}$ is super edge-magic [9] if and only if $n \geq 6$ and n is even (also see [10]). Graph theorists are still working on this famous conjecture. In [3] H . Enomoto et al. showed that the generalized prism $C_{2 m+1} \times P_{m}$ is super edge-magic for every positive integer m (also see [4]). The following G lemma is quite interesting as far as super edgemagic graphs are concerned.

Lemma 1. [4] A (p, q)-graph G is super edge-magic if and only if there exists a bijective function $\delta: V(G) \rightarrow\{1,2, \cdots, p\}$ such that the set $S=\{\delta(x)+\delta(y) \mid x y \in E(G)\}$ consists of q consecutive integers. In such a case, δ extends to a super edge-magic labeling of G with magic constant $c=p+q+s$, where $s=\min (S)$ and $S=$ $\{c-(p+1), c-(p+2), \ldots, c-(p+q)\}$.
Kotzig and A. Rosa [11] proved that for every graph G there exists an edge-magic graph H such that $H \cong G \bigcup n K_{1}$ for some non-negative integer n. This fact leads to the concept of edgemagic deficiency $\mu(G)$ of a graph G, which is the minimum nonnegative integer n for which $G \cup n K_{l}$ is an edge-magic graph. Figueroa- Centeno et al. [5] defined a similar concept for super edge-magic graphs. The super edge-magic deficiency of a graph G, denoted by $\mu_{s}(G)$, is the minimum non-negative integer n such that $G \cup n K_{l}$ admits a super edge-magic labeling or $+\infty$ if no such integer n exists. In [5, 8] Figueroa-Centeno et al. have given
exact values of the super edge-magic deficiencies of several families of graphs, such as cycles, complete graphs, 2-regular graphs and complete bipartite graphs $K_{2, m}$. They also proved that all forests have finite deficiency. In [13] A. Ngurah, Simanjuntak and Baskoro gave upper bounds for the super edge-magic deficiency of fans, double fans and wheels. In [7] FigueroaCenteno et al. conjectured that every forest with two components has super edge-magic deficiency at most 1 .

Concluding the introductory discussion, magic sum of many standard and special families of graphs have been discussed by the graph theorists in the past. Discussion on obtaining magic sum on their disjoint union with isolated vertices is also highly considerable, which is the podium on which this article is erected.

Main Results

We shall prove our main results in the form of the following theorems.

Definition 1. Consider a multicyclic graph H_{m}, for a cycle C_{m}, with connection design as follows;
$V(H m)=\left\{x_{1}^{i}, x_{2}^{i}, x_{3}^{i}, x_{4}^{i}, y i, z i: 1 \leq i \leq m\right\}$
$E\left(H_{m}\right)=\left\{y_{i} y_{i}+1, z i z i+1: 1 \leq i \leq m-1\right\} \cup\left\{y_{1} y_{m, z 1 z m}\right\}$
$\cup\left\{y_{i} x_{1}^{i}, y_{i} x_{2}^{i}, y_{i} x_{3}^{i}, y_{i} x_{4}^{i}: 1 \leq i \leq m\right\} \cup\left\{z_{i} x_{1}^{i}, z_{i} x_{2}^{i}, z_{i} x_{3}^{i}, z_{i} x_{4}^{i}: 1 \leq i \leq m\right\}$.
We use the above definition while proving our results.
Theorem 1. The disjoint union of H_{m} with $K_{l, m}$ and $\left(\frac{m-1}{2}\right) K_{1}$ gives a super edge-magic sum if m is chosen to be odd.
Proof. Consider $H_{1} \cong H_{m} \cup K 1, m \cup\left(\frac{m-1}{2}\right) K_{1} \quad$ with vertex and edge sets:

$$
\begin{aligned}
& V\left(H_{1}\right)=\left\{x_{1}^{i}, x_{2}^{i}, x_{3}^{i}, x_{4}^{i}: 1 \leq i \leq m\right\} \cup\left\{y_{i}, z i: 1 \leq i \leq m\right\} \\
& \cup\left\{k_{i}: 1 \leq i \leq m\right\}\left\{d_{i}: 1 \leq i \leq \frac{m-1}{2}\right\} \cup\{k\}
\end{aligned}
$$

$E\left(H_{1}\right)=\left\{y_{i} y_{i}+1, z i z i+1: 1 \leq i \leq m-1\right\} \cup\left\{y_{1} y_{m}, z 1 z m\right\}$
$\cup\left\{y_{i} x_{1}^{i}, y_{i} x_{2}^{i}, y_{i} x_{3}^{i}, y_{i} x_{4}^{i}: 1 \leq i \leq m\right\} \cup\left\{z_{i} x_{1}^{i}, z_{i} x_{2}^{i}, z_{i} x_{3}^{i}, z_{i} x_{4}^{i}: 1 \leq i \leq m\right\}$ $\cup\left\{k k_{i}: 1 \leq i \leq m\right\}$.

Then $p=\left|V\left(H_{1}\right)\right|=\frac{15 m+1}{2}$ and $q=\left|E\left(H_{1}\right)\right|=11 \mathrm{~m}$. We are defining a bijection as

$$
f: V\left(H_{1}\right) \rightarrow\left\{1,2, \ldots, \frac{15 m+1}{2}\right\} \text { as follows: }
$$

$f\left(x_{1}^{i}\right)=4 m-i+1: 1 \leq i \leq m$.

$$
\left.\left.\begin{array}{c}
f\left(x_{2}^{i}\right)=\left\{\begin{array}{l}
\frac{1}{2}(5 m+i): 1 \leq i \leq m ; i \equiv 1(\bmod 2) \\
\frac{1}{2}(4 m+i): 2 \leq i \leq m-1 ; i \equiv 0(\bmod 2)
\end{array}\right. \\
f\left(x_{3}^{i}\right)=6 m-i+1: 1 \leq i \leq m
\end{array}\right\} \begin{array}{l}
f\left(x_{4}^{i}\right)=5 m-i+1: 1 \leq i \leq m
\end{array}\right\} \begin{aligned}
& \frac{1}{2}(i+2 m+1): 1 \leq i \leq m ; i \equiv 1(\bmod 2) \\
& f\left(y_{i}\right)=\left\{\begin{array}{l}
\frac{1}{2}(i+3 m+1): 2 \leq i \leq m-1 ; i \equiv 0(\bmod 2)
\end{array}\right.
\end{aligned}
$$

$f\left(z_{i}\right)=\left\{\begin{array}{l}\frac{1}{2}(i+12 m+1): 1 \leq i \leq m ; i \equiv 1(\bmod 2) ; \\ \frac{1}{2}(i+13 m+1): 2 \leq i \leq m-1 ; i \equiv 0(\bmod 2) .\end{array}\right.$
$f\left(k_{i}\right)=i: 1 \leq i \leq m$.
$f(k)=\frac{15 m+1}{2} ;$
$f(d i)=7 m+i: 1 \leq i \leq \frac{m-1}{2}$.

The edge-sums generated by the above scheme form a sequence of consecutive integers $\frac{5 m+3}{2}, \frac{5 m+5}{2}, \ldots, \frac{27 m+1}{2}$. Therefore by Lemma $1, f$ extends to a super edge-magic labeling of H_{1} with magic sum $21 m+2$.

We propose the following open problem for further work here.
Open Problem 1. For even m, can you find a magic- sum for the above defined graph H_{1} ?

Let us move to our second result.
Theorem 2. The disjoint union of H_{m} with $m P_{2}$ gives a super edge-magic sum if m is chosen to be odd.

Proof. Consider a graph $H_{2} \cong H_{m} \cup m P_{2}$ for odd m with following vertex and edge connection:

$$
\begin{aligned}
& V\left(H_{2}\right)=\left\{x_{1}^{i}, x_{2:}^{i}, x_{3}^{i}, x_{24}^{i}: 1 \leq i \leq m\right\} \cup\left\{y_{i}, z_{i}: 1 \leq i \leq m\right\} \\
& \cup\left\{p_{i}, q_{i}: 1 \leq i \leq m\right\} \\
& E\left(H_{2}\right)=\left\{y_{i} y_{i}+1, z_{i} z_{i}+1: 1 \leq i \leq m-1\right\} \cup\left\{y_{1} y_{m}, z 1 z m\right\} \\
& \cup\left\{y_{i} x_{1}^{i}, y_{i} x_{2}^{i}, y_{i} x_{3}^{i}, y_{i} x_{4}^{i}: 1 \leq i \leq m\right\} \cup\left\{z_{i} x_{1}^{i}, z_{i} x_{2}^{i}, z_{i} x_{3}^{i}, z_{i} x_{4}^{i}: 1 \leq i \leq m\right\} \\
& \cup\left\{p_{i} q_{i}: 1 \leq i \leq m\right\} .
\end{aligned}
$$

Then $p=\left|V\left(H_{2}\right)\right|=8 m$ and $q=\left|E\left(H_{2}\right)\right|=11 m$. Now, we are defining a labeling
$g: V\left(H_{2}\right) \rightarrow\{1,2, \ldots 8 m\}$ as:
$g\left(x_{1}^{i}\right)=4 m-i+1: 1 \leq i \leq m$.

$$
\begin{gathered}
g\left(x_{2}^{i}\right)=\left\{\begin{array}{l}
\frac{1}{2}(5 m+i): 1 \leq i \leq m ; i \equiv 1(\bmod 2) ; \\
\frac{1}{2}(4 m+i): 2 \leq i \leq m-1 ; i \equiv 0(\bmod 2) .
\end{array}\right. \\
g\left(x_{3}^{i}\right)=6 m-i+1: 1 \leq i \leq m . \\
g\left(x_{4}^{i}\right)=5 m-i+1: 1 \leq i \leq m .
\end{gathered}\left\{_{g\left(y_{i}\right)=\left\{\begin{array}{l}
\frac{1}{2}(i+2 m+1): 1 \leq i \leq m ; i \equiv 1(\bmod 2) ; \\
\frac{1}{2}(i+3 m+1): 2 \leq i \leq m-1 ; i \equiv 0(\bmod 2) .
\end{array}\right.}^{g\left(z_{i}\right)=\left\{\begin{array}{l}
\frac{1}{2}(i+12 m+1): 1 \leq i \leq m ; i \equiv 1(\bmod 2) ; \\
\frac{1}{2}(i+13 m+1): 2 \leq i \leq m-1 ; i \equiv 0(\bmod 2) .
\end{array}\right.} \begin{array}{l}
g\left(q_{i}\right)=\left\{\begin{array}{l}
\frac{1}{2}(15 m-i+2): 1 \leq i \leq m ; i \equiv 1(\bmod 2) ; \\
\frac{1}{2}(16 m-i+2): 2 \leq i \leq m-1 ; i \equiv 0(\bmod 2) .
\end{array}\right. \\
g\left(p_{i}\right)=i: 1 \leq i \leq m .
\end{array}\right.
$$

The set of all edge-sums generated by the bijection g forms a consecutive integer sequence $\frac{5 m+3}{2}, \frac{5 m+5}{2}, \ldots, \frac{27 m+1}{2}$.
Therefore by Lemma 1,g extends to a super edge-magic labeling of H_{2} with magic sum, same as obtained in Theorem 1.

Open Problem 2. For even m, can you find a magic- sum for the graph H_{2} ?

Theorem 3. The disjoint union of H_{m} with P_{m+l} gives a super edge-magic sum if m is chosen to be odd.

Proof. Consider $H_{3} \cong H_{m} \cup P_{m+1}$ for odd m with following vertex and edge connection:

$$
\begin{aligned}
& V\left(H_{3}\right)=\left\{x_{1}^{i}, x_{2:}^{i}, x_{3}^{i}, x_{24}^{i}: 1 \leq i \leq m\right\} \cup\left\{y_{i}, z_{i}: 1 \leq i \leq m\right\} \\
& \cup\left\{p_{i}: 1 \leq i \leq m+1\right\} \\
& E\left(H_{3}\right)=\left\{y_{i} y_{i}+1, z_{i} z_{i}+1: 1 \leq i \leq m-1\right\} \cup\left\{y_{1} y_{m}, z 1 z m\right\} \\
& \cup\left\{y_{i} x_{1}^{i}, y_{i} x_{2}^{i}, y_{i} x_{3}^{i}, y_{i} x_{4}^{i}: 1 \leq i \leq m\right\} \cup\left\{z_{i} x_{1}^{i}, z_{i} x_{2}^{i}, z_{i} x_{3}^{i}, z_{i} x_{4}^{i}: 1 \leq i \leq m\right\} \\
& \cup\left\{p_{i} p_{i}+1: 1 \leq i \leq m\right\} .
\end{aligned}
$$

Then $p=\left|V\left(H_{3}\right)\right|=7 m+1$ and $q=\left|E\left(H_{3}\right)\right|=11 \mathrm{~m}$. Now, we are defining a labeling

$$
h: V\left(H_{3}\right) \rightarrow\{1,2, \ldots, 7 m+1\} \text { as: }
$$

$h\left(x_{1}^{i}\right)=7 m-2 i+1: 1 \leq i \leq m$.

$$
h\left(x_{2}^{i}\right)=\left\{\begin{array}{l}
\frac{1}{2}(3 m+i+1): 1 \leq i \leq m ; i \equiv 1(\bmod 2) \\
\frac{1}{2}(4 m+i+1): 2 \leq i \leq m-1 ; i \equiv 0(\bmod 2)
\end{array}\right.
$$

$$
h\left(x_{3}^{i}\right)=11 m-2 i+3: 1 \leq i \leq m .
$$

$$
h\left(x_{4}^{i}\right)=9 m-2 i+3: 1 \leq i \leq m
$$

$h\left(y_{i}\right)=\left\{\begin{array}{l}\frac{1}{2}(i+m+2): 1 \leq i \leq m ; i \equiv 1(\bmod 2), \\ \frac{1}{2}(i+2 m+2): 2 \leq i \leq m-1 ; i \equiv 0(\bmod 2) .\end{array}\right.$
$h\left(z_{i}\right)=\left\{\begin{array}{l}\frac{1}{2}(i+11 m+2): 1 \leq i \leq m ; i \equiv 1(\bmod 2) ; \\ \frac{1}{2}(i+12 m+2): 2 \leq i \leq m-1 ; i \equiv 0(\bmod 2) .\end{array}\right.$
$h\left(p_{i}\right)=\left\{\begin{array}{l}\frac{1}{2}(i+1): 1 \leq i \leq m ; i \equiv 1(\bmod 2), \\ \frac{1}{2}(13 m+i+1): 2 \leq i \leq m+1 ; i \equiv 0(\bmod 2) .\end{array}\right.$

The edge-sums generated by the bijection h forms a consecutive integer sequence $\frac{3 m+5}{2}, \frac{3 m+7}{2}, \ldots, \frac{25 m+3}{2}$. Therefore by Lemma $1, h$ extends to a super edge-magic labeling of H_{3} with magic sum $\frac{39 m+7}{2}$.

Open Problem 3. For even m, can you find a magic- sum for the graph $H_{m} \cup P_{m+1}$?

Conclusion

In this article, we have mainly focused on computing the super edge- magic sum of disjoint union of graphs, in particular of $H_{m} \cup K_{1, m} \cup\left(\frac{m-1}{2}\right) K_{1}, H_{m} \cup m P_{2}$ and $H_{m} \cup P_{m+1}$.
We have shown these combinations have constant super edgemagic sums for their parities present. We have also proposed three open problems for further working in this field in order to obtain further accuracy.

Acknowledgement

The author is cordially indebted to the anonymous referee for valuable suggestions which have improved the final version of this article.

References

[1] G. S. Bloom and S. W. Golomb, Applications of numbered undirected graphs, Proc. IEEE 65 (1977), 562-570.
[2] G. S. Bloom and S. W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications, in Theory and Applications of Graphs, Lecture Notes in Math. Springer-Verlag, 642 (1978), 53-65.
[3] H. Enomoto, A. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105-109.
[4] R. M. Figueroa, R. Ichishima and F. A. Muntaner-Batle, The place of super edge-magic labeling among other classes of labeling, Discrete Math. 231 (2001), 153-168.
[5] R. M. Figueroa-Centeno, R. Ichishima and F. A. MuntanerBatle, On the super edge magic deficiency of graphs, Electron. Notes Discrete Math., 11 (2002), 299-314.
[6] R. Figueroa-Centeno, R. Ichishima, and F. Muntaner-Batle, on edge-magic labelings of certain disjoint unions of graphs, Australas. J. Combin. 32 (2005), 225-242.
[7] R. M. Figueroa-Centeno, R. Ichishima and F. A. MuntanerBatle, Some new results on the super edge-magic deficiency of graphs, J. Combin. Math. Combin. Comput., 55 (2005), 17-31.
[8] R. M. Figueroa-Centeno, R. Ichishima and F.A. MuntanerBatle, On the super Edge-Magic Deficiency of Graphs, Ars Combin., 78 (2006), 33-45.
[9] R. Figueroa-Centeno, R. Ichishima, F. Muntaner-Batle and Akito Oshima. A magical approach to some labeling conjectures. Discussiones Mathematicae Graph Theory. 31 (2011), 79-113.
[10] I. Gray, New construction methods for vertex-magic total labeling of graphs, Ph.D thesis, University of Newcastle, 2006.
[11] A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull, 13 (1970), 451-461.
[12] F. A. Muntaner Batle. On magic graphs, Ph. D. Thesis. Barcelona, November 2001.
[13] A. Ngurah, E. T. Baskoro and R. Simanjuntak, On the super edge-magic deficiencies of graphs, Australas. J. Combin., 40 (2008), 3-14.
[14] A. A. G. Ngurah, E. T. Baskoro and R. Simanjuntak, S. Uttunggadewa, On the super edge-magic strength and deficiency of graphs, Kyoto CGGT 2007, LNCS 4535, (2008), 144-154.

