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Introduction 

Our main working rests around finite, simple and undirected 
graphs. We are denoting vertex and edge sets of a graph G by 
V(G) and E(G) respectively. The (p, q)-graph G is a graph having 
|V (G)| = p and |E(G)| = q. A (p, q)-graph G is said to admit an 

edge-magic labeling if it admits a bijection δ: V (G) ∪ E(G) → 
{1, 2, . . . , p+q} such that δ(x) + δ(xy)+ δ(y) = c is a constant 

(called magic sum of G under δ), for each edge xy ∈ E(G). An 

edge-magic labeling of G becomes super edge-magic if it has the 
additional characteristic that δ(V (G)) = {1, 2, . . . , p}. A graph 
that admits a super edge-magic labeling is said to be super edge-
magic. Graph labeling has caught attention of many 
mathematicians which is not only due to mathematical problems 
that are being called into question in order to obtain accuracy in 
this area, but also for its wide application in astronomy, coding, 
circuit and network designing. Long ago, G. S. Bloom and S. W. 
Golomb studied applications of graph labeling to various 
branches of science in their articles, some of their discussions 
can be seen in [1, 2]. 
Primarily, H. Enomoto et al. [3] gave the idea of super edge-
magic labeling of graphs. Figueroa-Centeno et al. [6] showed 
that if G is a super edge-magic bipartite or tripartite graph, then 
for odd m, mG is super edge-magic. In [3] H. Enomoto et al. 
proved a complete bipartite graph Km,n to be super edge-magic if 

and only if m = 1 or n = 1. In [6] it is proved that K1,m ∪K1,n is 

super edge-magic if either m  is a multiple of n + 1 or n is a 

multiple m + 1. H. Enomoto et al. [3] proved that Cn is super 

edge-magic if and only if n is odd. C3 ∪ Cn is super edge-magic 

[9] if and only if n ≥ 6 and n is even (also see [10]). Graph 
theorists are still working on this famous conjecture. In [3] H. 
Enomoto et al. showed that the generalized prism C2m+1 × Pm is 
super edge-magic for every positive integer m (also see [4]). The 
following G lemma is quite interesting as far as super edge-
magic graphs are concerned. 
 
Lemma 1. [4] A (p, q)-graph G is super edge-magic if and only 
if there exists a bijective function δ : V(G) → {1, 2, · · · , p} such 

that the set S = {δ(x) +δ(y)| xy ∈ E(G)} consists of q consecutive 

integers. In such a case, δ extends to a super edge-magic labeling 
of G with magic constant c = p +q +s, where s = min (S) and S = 
{c − (p + 1), c − (p + 2), . . . , c − (p + q)}. 
Kotzig and A. Rosa [11] proved that for every graph G there 

exists an edge-magic graph H such that 1nKGH  for some 

non-negative integer n. This fact leads to the concept of edge-
magic deficiency µ(G) of a graph G, which is the minimum non-

negative integer n for which G ∪ nK1 is an edge-magic graph. 

Figueroa- Centeno et al. [5] defined a similar concept for super 
edge-magic graphs. The super edge-magic deficiency of a graph 
G, denoted by µ s (G), is the minimum non-negative integer n 

such that G ∪ nK1 admits a super edge-magic labeling or +∞ if no 

such integer n exists. In [5, 8] Figueroa-Centeno et al. have given 
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exact values of the super edge-magic deficiencies of several 
families of graphs, such as cycles, complete graphs, 2-regular 
graphs and complete bipartite graphs K2,m. They also proved that 
all forests have finite deficiency. In [13] A. Ngurah, Simanjuntak 
and Baskoro gave upper bounds for the super edge-magic 
deficiency of fans, double fans and wheels. In [7] Figueroa-
Centeno et al. conjectured that every forest with two components 
has super edge-magic deficiency at most 1. 
 
Concluding the introductory discussion, magic sum of many 
standard and special families of graphs have been discussed by 
the graph theorists in the past. Discussion on obtaining magic 
sum on their disjoint union with isolated vertices is also highly 
considerable, which is the podium on which this article is 
erected. 
 
Main Results 

We shall prove our main results in the form of the following 
theorems. 
 
Definition 1. Consider a multicyclic graph Hm, for a cycle Cm, 
with connection design as follows; 
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We use the above definition while proving our results.. 

 

Theorem 1. The disjoint union of Hm with K1,m  and 
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odd. 
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  with vertex and 

edge sets: 
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are defining a bijection as 
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The edge-sums generated by the above scheme form a sequence 

of consecutive integers 
2

127
,...,

2

55
,

2

35  mmm
. Therefore by 

Lemma 1, f extends to a super edge-magic labeling of H1 with 
magic sum 21m+ 2. 
 
We propose the following open problem for further work here. 
 
Open Problem 1. For even m, can you find a magic- sum for the 
above defined graph H1? 
 
Let us move to our second result. 
 
Theorem 2. The disjoint union of Hm with mP2 gives a super 
edge-magic sum if m is chosen to be odd. 
 

Proof. Consider a graph 22 mPHH m  for odd m with 
following vertex and edge connection: 
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Then mHVp 8|)(| 2  and mHEq 11|)(| 2  . Now, we are 

defining a labeling 
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}8,...,2,1{)(: 2 mHVg   as: 
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The set of all edge-sums generated by the bijection g forms a 

consecutive integer sequence
2

127
,...,

2

55
,

2

35  mmm
. 

Therefore by Lemma 1, g extends to a super edge-magic labeling 
of H2 with magic sum, same as obtained in Theorem 1. 
 

Open Problem 2. For even m, can you find a magic- sum for the 
graph H2? 
 

Theorem 3. The disjoint union of Hm with Pm+1 gives a super 
edge-magic sum if m is chosen to be odd. 
 

Proof. Consider 13  mm PHH  for odd m with following 
vertex and edge connection: 
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we are defining a labeling 
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The edge-sums generated by the bijection h forms a consecutive 

integer sequence 
2

325
,...,

2

73
,

2

53  mmm
. Therefore by 

Lemma 1, h extends to a super edge-magic labeling of H3 with 

magic sum .
2

739 m
 

 

Open Problem 3. For even m, can you find a magic- sum for the 
graph 1 mm PH ? 
 

Conclusion 

In this article, we have mainly focused on computing the super 
edge- magic sum of disjoint union of  graphs, in particular of 

1,1 )
2

1
( K
m

KH mm


  , 2mPHm  and 1 mm PH . 

We have shown these combinations have constant super edge- 
magic sums for their parities present. We have also proposed 
three open problems for further working in this field in order to 
obtain further accuracy. 
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