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Introduction. 

For a graph simple graph G, V(G) and E(G) denote the vertex set 
and the edge set, respectively. A (p, q)-graph G is one with |V(G)| 
= p and |E(G)| = q. Moreover, the theoretic ideas of graphs can be 
seen in [21]. A labeling (or valuation) of a graph is in fact a 
mapping that carries elements of graph to numbers (usually to 
positive or non-negative integers). Here, the domain will be V(G) ∪ E(G). In other words, the labeling in this article is total 
labeling. In some labelings only the vertex set or the edge set will 
be used and we shall call them vertex-labeling or edge-labelings, 
respectively. Graph labelings has many types such as harmonius, 
radio, cordial, graceful and antimagic. The recent survey of graph 
labelings can be seen in [5]. In this paper, we will focus on 
antimagic total labeling type. In [1], more details on an antimagic 
total labeling can be seen. The notion of edge-magic total 
labeling of graphs derives its origin in the research work of A. 
Kotzig and A. Rosa [12, 13] for which they used the terminology 
magic valuation. Let us now move to few useful definitions and 
relevant research work previously done.  
 
Definition 1. A (k, d) edge-antimagic vertex ((k, d)−EAV ) 
labeling of a graph G is a bijection ρ: V (G) → {1, 2, · · · , p} 
such that the set of edge-sums of all edges in G, {w(xy) = ρ(x) + 
ρ(y) : xy ∈ E(G)}, forms an arithmetic progression {k, k + d, k + 

2d, . . . , k + (q − 1)d}, where k > 0 and d ≥ 0 are fixed integers.  
 

R. Simanjuntak et al., [19] proved that cycles and path, C2n+1, 
P2n+1 and P2n, have an (n + 2, 1)-EAV labeling when n ≥ 1. They 
further proved that the odd path P2n+1 has a (n + 3, 1)-EAV 
labeling and the path Pn admits a (3, 2)-EAV labeling for n ≥ 1. 
In [3], M. Baca et al., proved that if a connected graph G (must 
not be a tree) has an (a, d)-EAV labeling then d = 1. Further that 
a cycle Cn has no (a, d)-EAV labeling for d > 1 and n ≥ 3 [3].  
 

Definition 2. A (k, d) edge-antimagic total labeling of a graph G 
is a bijection ρ: V (G) ∪ E(G) → {1, 2,  
· · · , p + q} such that the set of edge-weights of all edges in G, 
{w(xy) = ρ(x) + ρ(xy) + ρ(y) : xy ∈ E(G)}, forms an arithmetic 
progression {k, k+d, k+ 2d, ..., k+ (q − 1)d}, where k > 0 and d ≥ 
0 are fixed integers. The graph G, if admits such labeling, is 
called an (k, d) edge-antimagic total graph. (abbreviated as (a, d) 
− EAT labeling/ graph) 
 
Definition 3. An (k, d)-EAT labeling ρ is called a super (k, d) 
edge antimagic total labeling of G if ρ(V (G)) → {1, 2, · · · , v}. 
Thus, a super (k, d)- edge-antimagic total graph is a graph that 
admits a super (k, d) edge-antimagic total labeling. (abbreviated 
as super (k, d) − EAT labeling/ graph). If d = 0, then a super (k, 
0)-EAT labeling is called a super edge-magic total labeling and k 

is called a magic constant or valence. For d other than 0, k is 
called minimum edge-weight. These all (k, d) definitions related 
graphs are also termed as (k, d) arithmetic graphs.  
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The definition of an (k, d)- EAT labeling was established by R. 
Simanjuntak, Bertault and M. Miller in [19] as a natural 
extension of an edge-magic total labeling defined by A. Kotzig 
and A. Rosa earlier. A super (k, d)- EAT labeling is a further 
natural extension of the notion of a super (k, 0)-EAT labeling 
introduced by Hikoe Enomoto et al., in [4]. And not to forget the 
following interesting conjecture of the same paper that every tree 
admits a super (k, 0) edge-antimagic total labeling. Many 
researchers have pillared this conjecture by deriving super (k, d)- 
EAT labeling for many particular classes of trees. As in, stars, 
path like trees, W-trees, subdivided stars, caterpillars and 
lobsters. All such results can be seen in [2, 6, 7, 9, 10, 11, 8, 15, 
17, 18, 20]. And the famous computer calculated verification of 
upto 17 vertices tree [14]. 
 
 

Results 

We are providing, apart from definitions of some dual connected 
graphs, their (a, 2) and hence (a, 0) edge- antimagic total 
labelling. Here the notion of dual connected graphs is different 
from that of the notion that one graph being the dual of another. 
The following result are our relevant calculations. 
 
Theorem 1. The dual connected graph Gn is (a, 2) edge- 

antimagic total, for n chosen to be even.  
 

Proof. We first define the notion of dual connected graph Gn 
with following vertex and edge sets, 
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Then )12(2|)(|  nGVp n and 

3)12(4|)(|  nGEq n . By defining a bijective function 

on Gn as  },...,2,1{)(: pGV n   as follows: 
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 ( )( ix  being chosen to be corresponding label in the respective 

range). It can be easily followed that with appropriate edge- 

labels  refers to an (a, 2) and hence (a, 0) edge-antimagic total 
labeling of Gn, which are assigned in same and in opposite order 
respectively. 
 
Theorem 2. The dual connected graph Hn nonisomorphic to Gn is 

(a, 2) edge- antimagic total, for n choosen to be even.  
 

Proof. We define the notion of dual connected graph Hn with 
following vertex and edge sets, 
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( )( ix  being choosen to be corresponding label in the 

respective range). It can be followed that with appropriate edge- 
labels   refers to an (a, 2) and hence (a, 0) edge-antimagic total 

labeling of Gn, which are once again assigned in same and in 
opposite order respectively. 
 
 
Theorem 3. The dual connected graph Gn is (a, 2) edge- 

antimagic total, for n choosen to be odd.  
 

Proof. We define the dual connected graph Gn with following 
vertex and edge sets, for even n as; 
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( )( ix  being chosen to be corresponding labels). It follows with 

appropriate edge- labels   refers to an (a, 2) and hence (a, 0) 

edge-antimagic total labeling of Gn, which are assigned in same 
and in opposite order respectively. 
 
Theorem 4. The dual connected graph Hn nonisomorphic to Gn 

(defined in Theorem 3) is (a, 2) edge- antimagic total, for n 

choosen to be even.  
 

Proof. We define the notion of dual connected graph Hn with 
following vertex, edge connection, 
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Then )12(2|)(|  nGVp n and 

3)12(4|)(|  nGEq n . By defining a bijective function 

on Gn as  )}12(2,...,2,1{)(:  nGV n  as follows: 
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(  and    being choosen to be corresponding labels ). It can be 

easily followed that with appropriate edge- labels   refers to an 
(a, 2) and hence (a, 0) edge-antimagic total labeling of Hn, which 
are assigned in same and in opposite order respectively. 

 
Conclusion 
We have mainly provided super  (a, 0) and (a, 2) edge- antimagic 
labeling of dual connected graphs Gn and Hn. Wherein, an (a, d) 
edge-antimagic total labeling of a graph G is a bijection ρ: V 
(G)∪ E(G) → {1, 2,… ,p + q} such that the set of edge-weights 
of all edges in G, {w(xy) = ρ(x) + ρ(xy) + ρ(y) : xy ∈ E(G)}, 
forms an arithmetic progression {a, a+ d, a+ 2d, ..., a+ (q − 
1)d}, where a > 0 and d ≥ 0 are fixed integers, Our main focus 
here is a = 0 and a = 2.   
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