Global Journal of Current Research 12 (2) (2025) 86-89

Content is available at: CRDEEP Journals
Journal homepage: http://www.crdeepjournal.org/category/journals/global-

journal-of-current-reseach-gjcr/

Global Journal of Current Research
(ISSN: 2320-2920) (Scientific Journal Impact Factor: 6.122)

PUBLISHING SINCE 201
UGC Approved-A Peer Reviewed Quarterly Journal

Research Paper
Threat Detection System: A Comprehensive Cybersecurity Solution

Badal Kumar Singh!; Manmohan Singh Negi!; Dr Tirupesh Joshi2 and Dr. Sanjeev Kumar3'
1- PG Scholar, Department of Computer Applications, Tula’s Institute, Dehradun.

2-Associate Professor, CIRE, , Tula’s Institute, Dehradun.

3- Professor, Department of Computer Applications, Tula’s Institute, Dehradun

ARTICLE DETAILS ABSTRACT

Corresponding Author: The Threat Detection System is a web-based application designed to protect users from

Dr Sanjeev Kumar cyber threats such as malware, Phishing, and fake login pages. Built with Flask, ClamAV, and
the Google Safe Browsing AP], it offers file scanning, URL safety checks, and fake login

Key words: detection through an intuitive interface. This article provides a detailed overview of the

Cyber Security, Threats, system'’s features, architecture, and implementation, enhanced with diagrams and charts to

Attacks, Cyber Safety illustrate its functionality. Intended for both technical and non-technical readers, it

highlights the system’s role in modern cybersecurity and potential areas for enhancement.

1. Introduction

In today’s digital landscape, cyber threats like malware, phishing, and social engineering attacks are increasingly
prevalent. The Threat Detection System is a robust, user-friendly web application that empowers individuals and
organizations to proactively identify and mitigate these risks. By integrating file scanning, URL safety analysis, and fake
login detection, the system provides a multi-layered defense against cyber threats. This article explores its features,
technical architecture, and operational workflow, supported by visual aids to enhance understanding.

1.1 Problem Identification

Security Issues (High to Medium Priority)

The project has critical security flaws that need urgent attention. A major concern is the hardcoded Google Safe Browsing
API key in app.py, which risks unauthorized access, quota exhaustion, or billing issues if exposed. Similarly, the hardcoded
ClamAYV path tied to a specific Windows XP directory makes the application vulnerable to failure on other systems and
limits portability.

Functionality Issues (High to Medium Priority)

Functionally, the project falls short of its promises. The Threat Monitor page, described as offering real-time monitoring
and Al-driven insights, is currently just a placeholder with no actual functionality, which could disappoint users expecting
robust features.

Usability Issues (Medium Priority)

From a usability perspective, the user interface lacks polish and clarity. Scan results in index.html are displayed in plain
text without styling, making them hard to interpret, especially for non-technical users. Input fields for URLs, files, and
HTML content lack placeholders or guidance, increasing the likelihood of invalid inputs and user confusion. Navigation is
inconsistent, with index.html offering a full menu of links, while other pages only provide a "Back to Main" link, making it
harder for users to explore the application seamlessly.

Maintainability Issues (Medium to Low Priority)

1Author can be contacted at: Professor, Department of Computer Applications, Tula’s Institute, Dehradun.

Received: 15-05-2025; Sent for Review on: 22-05-2025; Draft sent to Author for corrections: 10-06-2025; Accepted on: 18-06-2025; Online Available
from 22-06-2025

DOI:10.13140/RG.2.2.27400.53762

GJCR: -8810/© 2025 CRDEEP Journals. All Rights Reserved.

86

http://dx.doi.org/10.13140/RG.2.2.27400.53762
http://www.crdeepjournal.org/category/journals/global-journal-of-current-reseach-gjcr/
http://www.crdeepjournal.org/category/journals/global-journal-of-current-reseach-gjcr/

Kumar et. al, Global Journal of Current Research 12 (2) (2025) 86-89

The codebase has maintainability challenges that could hinder future development. Hardcoded client information for the
Google Safe Browsing API, such as the clientld and clientVersion, reduces flexibility and could cause issues with API
updates. The reliance on an outdated ClamAV version specific to Windows XP limits threat detection capabilities and
compatibility with modern systems. Minimal logging, with only a print statement for file deletion errors, makes debugging
difficult in production.

Performance Issues (Medium Priority)

Performance-wise, the synchronous execution of ClamAV scans via subprocess.run can block the server during large or
complex scans, degrading responsiveness for concurrent users. The /scan/url endpoint queries the Google Safe Browsing
API for every request without caching, wasting API quota and slowing down responses for repeated URLs.

Documentation Issues (Low Priority)

Documentation is virtually nonexistent, posing challenges for new users or developers. There’s no README.md or setup
guide to explain how to install dependencies, configure ClamAV, or run the application. Similarly, the API endpoints lack
documentation for inputs, outputs, or error codes, making integration difficult for developers.

2. Methodology
The Threat Detection System offers three core functionalities:
o File Scanning: Upload files (e.g., documents, executables) to detect malware using ClamAV’s deep scanning
capabilities.
e URL Safety Checking: Analyze URLs in real-time with the Google Safe Browsing API to identify phishing or
malware-hosting sites.
e Fake Login Detection: Examine HTML content to flag potential fake login pages, a common phishing tactic.
These features are accessible via a responsive web interface, ensuring ease of use for both casual users and security
professionals.

Technical Architecture

The system is built using modern web technologies, with a clear separation of backend and frontend components. The
architecture is illustrated in Figure 1.

Client Browser
i)

Render Results | HTTP Requests

Frontend
(HTML, JavaScript)

JSON Response | Fetch API

ClamAV File Scan Flask Backend\URL Check Google Safe
(File Scanning)gcan Results . API Responserowsing API

Results | HTML Analysis

(Business Logic
(Fake Login Detection)

Fig 1: System Architecture of the Threat Detection Sys;cem

Operational Workflow
The workflow for each feature is streamlined for efficiency, as shown in Figure 2.

User Submits
| Input (File/URL/HTML)

Frontend Sends
Request to Backend

Goolfisafe

<"|.-.mnxmc.m_ | ¥
Fle Browsing API

Input Type?

HTML

LA
Analyze HTML
Content

.| Backend Returns
esult

Frontend Displays

Fig 2 :Operational Workflow of the Threat Detection System
87

Kumar et. al, Global Journal of Current Research 12 (2) (2025) 86-89

3. Result

The Threat Detection System, built with Flask and JavaScript, aims to provide users with tools to scan files for malware,
check URLs for phishing or malicious content, and detect fake login pages. The expected results hinge on three core
functionalities. First, the file scanner uses ClamAYV to analyze uploaded files and return a status of "clean,” "malicious," or
an error message, based on whether ClamAV detects threats. Second, the URL scanner queries the Google Safe
Browsing API to classify URLs as "safe," "malicious,” or "error,” depending on known threat patterns. Third, the fake
login detector examines HTML content for simplistic indicators of phishing (e.g., presence of "login" without a proper
form action), returning "safe" or "fake." These results are displayed in the index.html interface as plain text, offering users
immediate feedback on their scans. To visualize these results and issues, I'll provide two charts. The first chart illustrates
the expected distribution of scan outcomes (clean, malicious, error) for file and URL scans, assuming a hypothetical
dataset of 100 scans. The second chart highlights the impact of identified issues on result reliability across the three
functionalities. These charts are conceptual, as the project lacks actual result data, but they reflect likely outcomes based
on the code’s design and limitations.

Hypothetical Scan Outcome Distribution

Number of Scars

il
1
1
]

Clean/Safe Malicious Error

This chart shows a hypothetical breakdown of results for 100 file scans and 100 URL scans, assuming typical threat
detection scenarios. The file scanner might classify most files as clean, some as malicious, and a few as errors due to
ClamAYV issues. The URL scanner, relying on Google Safe Browsing, would likely mark most URLs as safe, with fewer
malicious or error results, given the API’s focus on known threats.

Chart: Impact of Issues on Result Reliability

This chart illustrates how identified issues (security, functionality, performance) affect the reliability of results for each
functionality. The fake login detector is most impacted due to its simplistic logic, while file and URL scanners are
moderately affected by outdated tools and single-API reliance.

Impact of Issues on Result Reliability

Radar Chart:

This radar chart shows that security issues (e.g., hardcoded keys, lack of validation) heavily impact all functionalities, with
fake login detection suffering the most from functional weaknesses. Performance issues are less severe but still notable,
especially for file scanning.

4. Analysis and Recommendations

The project’s results, while functional in a basic sense, are undermined by critical issues. Security flaws like hardcoded
credentials and unsanitized inputs could allow attackers to manipulate scan outcomes, leading to false results. The
incomplete Threat Monitor page means a key feature is non-functional, disappointing users expecting real-time
monitoring. Usability issues, such as plain result displays and inconsistent navigation, make the system less intuitive.

To improve results, secure the API key and ClamAYV path in environment variables, enhance fake login detection with
advanced heuristics, and implement the Threat Monitor with real-time capabilities. Adding styled Ul feedback and
caching for URL scans would boost usability and performance. These changes would ensure more reliable and user-
friendly results, aligning with the project’s cybersecurity goals.

88

Kumar et. al, Global Journal of Current Research 12 (2) (2025) 86-89

5. Conclusion and Future Enhancements
The system is functional but has areas for improvement:
o Fake Login Detection: Current heuristics are basic. Machine learning could enhance accuracy.
e Scalability: ClamAV’s local dependency limits portability. Cloud-based scanning services could improve
scalability.
e UI/UX: Adding a CSS framework like Tailwind CSS would enhance the interface.
Future enhancements may include real-time monitoring, multi-file scanning, and additional threat intelligence
integrations.

References

M. Lang, S. Dowling, and R. G. Lennon, "The Current State of Cyber Security in Ireland," 2022 Cyber Research Conference -
Ireland (Cyber-RCI), Galway, Ireland, 2022, pp. 1-2, doi: 10.1109/Cyber-RC155324.2022.10032682.

S. R. Kumar, S. A. Yadav, S. Sharma, and A. Singh, "Recommendations for effective cybersecurity execution,” 2016
International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), Greater Noida, India, 2016, pp.
342-346, doi: 10.1109/ICICCS.2016.7542327.

T. Bolling and R. G. Lennon, "Viewing DevOps Security Processes through An Applied Cyberpsychology Lens," 2023 Cyber
Research Conference - Ireland (Cyber-RCI), Letterkenny, Ireland, 2023, pp. 1-6, doi: 10.1109/Cyber-RCI594.

T. M. Mbelli and B. Dwolatzky, "Cyber Security, a Threat to Cyber Banking in South Africa: An Approach to Network and
Application Security," 2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud), Beijing,
China, 2016, pp. 1-6, doi: 10.1109/CSCloud.2016.18.

X. Xiong, Q. Yao, and Q. Ren, "Mission-Oriented Security Framework: An Approach to Embrace Cyber Resilience in Design
and Action," 2023 7th International Conference on Cryptography, Security and Privacy (CSP), Tianjin, China, 2023, pp. 54-58,
doi: 10.1109/CSP58884.2023.00016.

89

	3. Result
	4. Analysis and Recommendations
	5. Conclusion and Future Enhancements
	References

