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Corresponding Author: The aim of this paper is to derive the oscillation properties of fourth order Emden-Fowler
P.V.H. S Sai Kumar differential equation with a sublinear neutral term of the form
Key words: (a(e)((mE)x () + p)x® =N + gD xF (o)) =e(t), t=t,. (1)

Oscillation, Fourth
order, Neutral

Differential equation,
Sublinear. order differential equations with sublinear neutral terms are given under the condition that

is considered. Some new sufficient conditions for oscillation of all solutions of a class of second

= 1
) tn I ds = @, By applying the Riccati Transformation technique sufficient conditions for the
ar(s]

oscillation of the equation is obtained. Also, the results are an extension and simplification as well
as improvement of the previous results.

1. Introduction
In this paper, we study the oscillatory behavior of fourth order Emden-Fowler differential equations with sublinear
neutral term of the form
(a(O)((m®)x® + pE)x*T(ON" I + ¢ xF(a(®) ) = e(p), t =t
In last few years there has been much research activity concerning oscillatory behavior of various classes of
differential equations. Oscillatory phenomena arise in various models from real world applications see e.g. [3,8,10].

Oscillatory behaviour of second order differential equations is extensively studied by [4,6,7,9,13,14] and also Oscillatory
behaviour of Third order differential equations is extensively studied by [16,17], and for the Oscillatory behavior of fourth
order we refer to [11,12,15].

Hui Li et al. [5] studied the second order Emden- Fowler neutral delay differential equations of the form

la(®) N + FOF () =0

where z(t) = x(t} + p(t)x((z)) and obtained oscillation criteria by applying the inequality Technique and Riccati
Transformation.

Agarwal et al. [2] considered the second order Emden-Fowler differential equations of the form

(a(®)(y () + p(Oy(aE) ) + Fiey'(z)) =0, t=¢,

A.A El-Gabera et al. [4] studied the oscillatory behavior of second order differential equations of the form

GEEEY +FOE®) +hty(e®) =0 t=t=0

and established some new sufficient conditions.
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By a solution of equation (1) we mean a function x (t) € C([Ty.w)), T, = t; which has the properties
z(8) e ¢ ([T ) ). a(e) (2 ()" & C'(([T,.%)) and satisfies equation (1) on ([Ty.%}).We consider only those solutions x
of equation (1) which satisfy sup{lx(¢t}| : t =T} =0 forall T = T,, and assume that the equation (1) possesses such

solutions. As usual, a solution of equation (1) is called oscillatory if it has a zero on [T, ) for all T = T, ; otherwise it is
called nonoscillatory. If all solutions of a differential equations are oscillatory, then the equation itself is called oscillatory

2. Method
In this paper we use few Lemmas and Inequality (16) which are helpful to prove our results by applying the Riccati
Transformation technique.

3. Main Results
We need the following in our discussion
(H): 0 =a =1 F and ¥ are ratios of odd natural numbers, m(t} is areal valued continuous

function.
(H,): a € €[ty 00),(0,00)), a'(t) =0, p.ge C[tp,20), (0. c0)), lim p(t) =0 and

gltd) =0e(t) =0, ) =t v'(t) =0 and olt) < t.0a'(t) = 0. lim o(t) = wo.
(H,): We define R(t) = [ ——ds = )

I:?ISI
Lemma 3.1([1]). Suppose that o € € "{[v,, R*), where g™ () has a constant sign and is non-zero on [¥7;, 22). Additionally,
suppose that there is v, = 17 such that 2" * (v)p™ (') = 0 for every v = v,. If lim p(v} = 0, then for any & € (0.1), there is
=

£

v; € [vy.0) such that p(v) = v p P (w)), for p € [ o).

(-1
Lemma 3.2. Let p € C™([vy,20),(0,02)), p(1) =0 for i = 1,2, .....n, and p'™** (1) = 0, eventually. Then, eventually,
£ = = forevery £ € (0,1),
gl n

Lemma 3.3. Assume that x (£} is an eventually positive solution of (1). Then, x(t} eventually satisfies the following cases
C: =z =0z =0z"() =0z"() =0 (a()z" () <0,
C.:  =z(£)=0z'(8) =0,z"() < 0.z" () =0, (a(t)Wz""(£7) <0,

Theorem 3.1: Assume that (2) holds. If § = ¥ and there is a nondecreasing function g € € "([tz.02], (0, 22 such that

v ' s els ¥a(ols "(s))¥+E
lim supJ‘ pls) (q{s] 7 . ('J. _p{ L{_g]) - {3]) - 2 {;]]{P (=) ds = oo,
fm e 0 mf(a(s)) £, ! @+ Dric, 7 (co(s)o"()p(s))
(3)

holds for every ¢,.c2 = 0. then (1) is oscillatory.

Proof: We assume for contradiction that (1) has an eventually positive solution of x (£).
Set
z(t) = me) x(8) + p(t)x"(z()) 4)
Then z(t) = x(t). By (1) and (2), we obtain that for t, = t,
zZ(£) =0, z'(8) =0, z"(t) = 0.z" (1) =0, a(®)E"(ENY)' =0, t=t. (5
Since @t} = t, then we have from (5) that

a(B)(z" (1) }F < a(alt)) (:z"'{r;r{t]}l:llr . Ezty (6)

Since that z'(t) = 0. Hence there exists a constant ¢, > 0 such that z(t} = ¢, forall t large enough.

By (5), one gets
m(t)x(t) = z(t) — p(t)z®(=(t))

(i) = ;(L - plt) ]z{t] (7
~ ml#) £, %
Then from equation (1), we have 5
(a(e)((mE)x (&) + p(E)x"(T(ON)" Y + gl8) ! (1 —p{ﬂm}] Fla(t)) <elt)
mf(a(#)) £, ¢ -
(8)
Define )
w(®) = p(®) % t=t, Q
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@(E®) (a®(="®)") NI CHCNEXCIONAC
zB(alt)) te z8(a(t)) Bl zB+1(ag(t))
(10)

w'(t) = p'(t)

We see from (7), (8), (9) and (10) we obtain

P 1 p(e@)) @
w'(t) = Eﬁd{f] —plt) (‘?{ﬂ m'?{a{t]}(l gt ) _zs{a{t]})
='(alt)
— Ba'(t) m{t]ﬁ- (11)

Since z(t) = 0,z'(t) = 0.z"(t) = 0,z (t) = 0, and, (a(t)(z""(£))¥)" =< 0 according to Lemma 3.1, we can deduce that
z'(f) = ;t:z"'{t]
and i
' (al®)) = Za? ()" (a(®)) (12)
for all € £(0,1) and every sufficiently large . Substituting (12) into (11), we obtain

) g’ () 1 plale)) ¢ elt)
w'(£) = Ew(t] — plt) (q{t] mﬁ{a{t]}(l ~ e ) _zﬁ{a{t]})
e .. z"(alth)
—E_El‘r.r (t)e'(t) ) w(t)

, 1 ple®@) e | p®
w'(t) = —p(t](q(r) mﬁ{a{ﬂ}(l ~ o= ] " 60) gey w(t)
_;ﬁa':&]a () nr{u{t]}z {ﬂ{t]} ().

2" alete) W)

Since (a(t){(z""}¥(£)})" < 0, we conclude that
ar(£)z" (£) < av(a(e))z" (alt)).
Then,

w'(t) = —p(t) (q{t

& r
] 1 (1 _ p{r.r{_t] }] _ elt) N p'(t)
mB(a () £, ()] plt)

B ar@z" )

o (E)

- : tal E
2 ﬂ:_f{r.r(t]} z(o(t)
, 1 ple@)V el | 2@

2 ' By e
6 ool ' r(z(o {t]}lfmf? (£).

2 (p(®) a(a ()

(13)
Because z'(t} = Oand f = ¥, there exists constants ¢; = 0 and t. = t, such that
z{r.r{t]] = 0
f-r f-r
zv (et ze v, t=t. (14)

Substituting the inequality (14) in (13) gives .
'I__x "
v ot(tle'(t) oz

g r
w'(8) = —p(®) (q{ﬂ (1 —p{ﬂfi}) - gi?) REACRRR L rw v (8,
mfa@)\ e ) p® (p(®) a(a(t))"
(15)
Using the following inequality in (15),
rit y¥ py+tL
Bu—Auvr (1a)

d: —_.l
Ty + v A

whereA =0, B =0,y =0 with
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) By
=2 ® . A= eve, ¥ o (B0’ {,r]and ult) = w(t)
o () 2pOa(e® )
We get .
1 ¥ PepnYFHL
W' () < —_ﬂ{t](q{t 0 {]}( {a{ti}] _9{;]) n{ﬁ]]{_ﬂ ()
? € ¥ + Dr+ie, v (ea(E)a’ (D)p ()Y
(17)
Integrating (17) from t; = t- to £, we obtain
/ 1 _ p{a{s]} d els)’
{ 70 (s9 ray (-Fr) -5
i ds = w(ty)

2 a((s)) (o' ()7
- [
{y + 17*1e, ¥ (ea(s)o'(s)p(s )7/
This is a contradiction to (3) as £ — ©2. Thus the proof is completed.
Theorem 3.2: Suppose that (2) holds. If 0 == § == ¥ and there is a nondecreasing function
p € C'([ty o), (0, 22)) such that

_ r 1 _ plals)) ¢ alt) 28 a(t)(p'(£))F _
Hm sup J‘rn (P{ﬂ (q{t] m'?{cr{t]}(L T gt J - ﬂf )_ B+ 'L:l'?“cg'?"f'ifaf{t]a’{t]_ﬂ{t]]s) ds = .

(18)

holds for every ¢;.c5 = 0, then (1) is oscillatory.
Proof: We suppose for contradiction that (1) has an eventually positive solution x (). As in the proof of
Theorem 3.1, the function w(t) is defined as in (9) and then (10) holds. By (1), and (7) - (10), we conclude that

o 1 ple®@)} e 2 (a(®)
o' ® <S50 -5 (q(r] ms{am}(l— CLH) ‘zs{gm}) -0’ Do) S
By (12) we observe that

) 1 {a{t] N e p'(t)

0@ < —_ﬂ(t](q(t - m}( =) zs{am})* 5 e®
ef ) ﬁ'—-f{ {ﬂ}
-0 W@ ("®) 7 ey O

, 1 {r.r{t]]l e | p®

w'(t) < —p{t](q{t (o m}( — ] _zﬁ{g{ﬂ})J’ o0 w(t)
ﬂ g-{tla'(£) v g+

- (=" m} Wk (@)
“ (plt)a(t))e
(19)
Given that 0 < £ < ¥ and (C,) hold and since a' (t) = 0, it follows that z'" (t) = 0. This implies that ="' (t) is
nonincreasing. Then there exist constants ¢; = 0 and £; = . such that
=" (t) < eg.

")y 2 v, t=t. (20)
From (19) and (20) it follows that .
g r 'I__£ Z r 31
o © < —p) (q{t S{L{ . ( {r:r(ti }] _gm)+p :}J oo -Fa SLACI
t P < (p(®a(t))F
(21)
Using the inequality (16) with
g-¥
_g (t) , Ao efey ¥ a(t)a’ {,t]and w() = w()
40 2 {_ﬂ{ﬂ a {a{t]}
It can be deduced that from (21) that .
r 1 {u{t]} e(t) 2Pa(t)(p'(£))F
() = _pm(q{t m#(a {ﬂ}( - ) B cf) (# + DB+ B-Y(ea (t)a' (t)p(E))F
(22)

On integrating (22) over the interval t, ta £. one arrives at
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; B \
1  pla(®) elt)
ef () q{t]m 1 - s -
f t “2 /| ds = w(ty)
s 2Pa(t)(p'(tE+
T (B + 1P P (ea(t)a (D) p(t)E
This is a contradiction to (18) as t = =, Thus the proof is completed.
Theorem 3.3: Assume that (2) holds. If § = ¥ and there is a nondecreasing function
p e C'([ty ), (0, e2)) such that

a8,
£

e 1 ON o)) /o*(e)
t Mf Fp,(s) (q{s] 3{ { ]}(J. _P‘Eﬂ:a}') e ".; )(ﬂ ss )
i SHPJ‘ AL 1 MIL ds = oo,
In

= ¥ a(s)a(s)"*t

Ty 1 (es2a, (s)0Y

(23)
holds for every ¢;.c2 = [, then (1) is oscillatory.
Proof. We suppose for contradiction that (1) has an eventually positive solution. Now we define a function

wy (£} = p, (&) w (24)
which yields @, (£} = 0, and
a®)(z"(6))" a®) (" ©)) a®) (z" () ')
E-:.'ljr_':f] =_D£':t] %4‘_@_{1’] %_ ]"_I':’L{t] {Z'?'H":E] {25]

From (1), (7), (8), (24) and (25) that

, 1 (0 ple®) @ \zFe®) @
wy (£} < —p, (t) (f?':i'] mS{a{t]}(L - ¢ - ) _z'?{ﬂ{t]}) z¥ (£) + o0 () wy (£)
=z'(£)
Vo (£).
(26)
We deduce from Lemma 3.2, that .
=z(t) = gtz":t],
and hence, .
z(a(t)) - (ug{t])? -
z(t) £ (27)
From Lemma 3.1, we conclude that
z'(t) = ;t:z"’{t] (28)
for all € € (0,1). Thus, by (26), (27) and (28), we have
, 1 pe®@) e\, fe@) p®
wy(t) <—p (t) (q{t] ms{g{ﬂ}(L ~ ) ~F0))* pr 7 + NG w, (t)
£y :z"'{t]
—?i‘ —z{t] ey (£
0 = 0 (o (1 p{u{ﬂ})"’ o \ . (aﬂr:ﬂ f PO
Gy = - q m'?{r.r{ﬂ} - I:.J_J_—n::' _ES{U'&]} E (t) ; + Pj_{t] ey
ey £ 14y
w7 (1),
= la(t)ay (£}
(29)
Since z'(t) = 0. there exists a tz = t» and a constant M; = 0 such that
z(t) = M,.
Since # = ¥. then
e = MY (30).

Thus inequality (29) gives
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ag
1 p(e®)\ e[ O\ pi(d)
w, () = =MV p, (&) (q(t] mﬂ{a{ﬂ}(l —‘JE;_H}) ‘E,H.s )(ﬂ - ] +.:{t] w, (£)
M; [
E}’i': 14y
- w ¥ ([t)
2(a(t)oy (t)7
(31)
Using rthe inequality (16) with
:pj'?; ., A =L, and ult) = ew, (£)
Pt 2(a(t)a, (£))
we can derive the following inequality .

g - -
I 1 ( _p{aiﬂ}) _el®) (a“:ﬂ] 2 a()ai @)+
@it =M, "p () (q{t] mB(a(t)) ! £ Mf t * (y + D+t (et2a, (O

(32)
On integrating (32) from £: =t to £, we get

af
r . 1 plals)) d els)) fa? (=) 2 a(s)le] ()7 *!
B ¥ ; _-"? _ _ 1
L(ML '”L{SJ(”{” mﬂ{a{sJ}(L = m‘f)( ) T ey S

which contradicts (23) as t — ©2. Thus the proof is completed.

4. Conclusion

The goal of this paper is to study the “Oscillatory behavior of fourth-order Emden-Fowler differential equations with a sub-
linear neutral term” of equation (1) by using Riccati Transformation technique. Further extension of these results can be
used to study a class of system of higher order Neutral differential equations as well as Fractional order equations. Some
research in this area is in progress.

The results of this study complement many of previously published findings in the literature. To our knowledge, this
equation has not been studied by many researchers, so it would be a good idea to apply these results to non-linear higher-
order NDEs in the future.
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