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1.  Introduction 

The numerical data extracted from original publications related to experimental nuclear physics is inadequate for nuclear 

physics applications; instead they rely on evaluated (or recommended) nuclear data (nuclear reaction and nuclear 

structure data). The evaluated nuclear data is generated by experienced nuclear data evaluators, by carefully combining 

(using advanced statistical methods) numerical results from both experiments and theoretical models. This paper focus on 

the data reduction and data evaluation in the context of efficiency calibration of HPGe or Ge(Li) detector. The methodology 

presented in this paper is applicable in the evaluation of nuclear reaction data (e.g., neutron induced reaction cross-

sections, compiled in EXFOR database) and also useful in the analysis of experimental data in general. 

 

1.1 Experimental context and data 

Suppose an experimenter perform n distinct measurements to determine absolute full energy peak efficiency (ϵi) of the 

HPGe or Ge(Li) detector corresponding to gamma energies (Ei). The aim is to generate pair (ϵi, Ei) of calibration points at a 

source to detector distance of approximately 20 cm. The experiment was conducted in March 1988, as a part of neutron 

activation experiment. The point sources used for calibration were [2]: 60Co (5.271(0.001) y) with an activity 3.193×105 

(±0.9%) Bq. was recorded in February 1984, 137Cs (30.174(0.034) y) with an activity 1.565×105 (±1.5%) Bq. was recorded 

in January 1985 and 152Eu (13.33(0.04) y) with an activity 4.208×105 (±1.5%) Bq. was recorded in April 1979. The gamma 

counts per live time (full energy peak yields) C for each of 12 lines, gamma energies and abundances are presented in 

Table 1. The counting experiment is repeated n times and the count data presented are the weighted averages. 

 

2.  Errors, uncertainties and covariance matrix 

The gamma counts C and efficiency of the detector ϵ are related through the equation 

 

C = Aaϵ, (1) 
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This paper describes procedure to generate covariance matrix in the context of 

efficiency calibration of Ge(Li) detectors using partial uncertainties and micro-

correlations. In order to keep the article self contained a) Complete raw data is 

presented, b) Procedure to generate covariance matrix using partial uncertainties 

and micro-correlations is outlined in the context of efficiency calibration of Ge(Li) 

detector. Note that the raw data presented in this article is extracted from the 

published articles [1, 2, 3], for demonstration purpose. The procedure outlined here 

is applicable to the nuclear data available in EXFOR library in the process of nuclear 

data evaluations. 
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Table 1.  Gamma lines, gamma abundances and gamma counts[1]. 

 

Line No. Source Eγ (keV) Iγ (%) C 

1 60Co 1173 100(0.01) 56.64±0.23 

2 
 

1333 100(0.01) 51.93±0.21 

3 137Cs 662 85.6(0.1) 62.04±0.19 

4 152Eu 245 7.42(2.1) 24.99±0.05 

5 
 

344 26.4(1.5) 65.02±0.07 

6 
 

444 3.08(1.6) 6.00±0.02 

7 
 

779 13.0(1.7) 14.89±0.04 

8 
 

867 4.16(1.3) 4.45±0.02 

9 
 

964 14.5(1.6) 14.17±0.03 

10 
 

1086 11.8(2.2) 10.40±0.03 

11 
 

1112 13.6(1.5) 11.86±0.02 

12 
 

1408 20.7(1.3) 14.74±0.03 

Where; a is gamma abundance and activity A at the time of measurement is related to activity A0 and decay constant (λ) by 
decay law 

 

A = A0e−λt.                 (2) 

All the required information to determine ϵ at 12 calibration points are presented in Section. I. Note that data are 

presented in the form ⟨x⟩±∆x, because true value of a physical quantity xtrue is given by xtrue = ⟨x⟩+δx, where ⟨x⟩ is the best estimate of x and δx is the associated error. The error and true value, both remain unknown, but our knowledge about the error can be represented by defining uncertainty ∆x = √(δx)2, which can be estimated from the experiment. In the context of efficiency calibration, there are four distinct component errors δC, δa, δλ and δA0. In linear approximation total error δϵ is related to component errors (total error is approximately equal to sum of partial errors) as 

                            (3) 

By using Eq.(1), Eq.(2) in Eq.(3) and after simplification total uncertainty ∆ϵ = √⟨(δϵ)2⟩ is given by 

 

                (4) 

 

where ⟨ϵ⟩ is the best estimate of ϵ obtained in accordance with ⟨C⟩ = ⟨A⟩⟨a⟩⟨ϵ⟩. Recast Eq.(4) as 

( 5) 

                                                            (6) 

where, e1, e2, e3, and e4 are partial uncertainties[3] having the dimension of ϵ. i.e., square of total uncertainty (variance) is 

just sume of square of partial uncertainties. 

 Similarly, the covariance between two errors ∆ϵij = √⟨δϵiδϵj⟩ is given by 

                                                                       (7) 

 

where l = 1, 2, 3, 4 corresponds to attributes (or different components), e.g., 

 
S corresponds to micro-correlation, e.g., S1ij is the correlation within the first attribute. If errors are categorized into 

random and systematic errors, it will be easier to assign micro-correlations. Among the four component errors, except δC, 
remaining three component errors are known prior to the counting measurement and are adopted from different sources. 

For e.g, Activity, decay constant and gamma abundances are either measured by someone else or they can be even 

evaluated values. We don’t have freedom to minimize the errors, where as just by increasing the counting measurements δC can be reduced. Those errors which are directly connected with the current measurement and which can be reduced by 
increasing number of experiments, such errors are called random errors and all other error component errors are called 

systematic errors. In the context of efficiency calibration only δCi are random errors, remaining error components are 
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systematic. Micro-correlations between random errors are assigned zero, where as micro-correlations between systematic 

errors are assigned one if a component systematic error is common to whole data base, else it is zero. If there is additional 

information is available, then only micro-correlations between a component systematic errors can be assigned values 

other than zero and one. Note that in Eq.(7) if i = j reduces to square of ∆ϵi (Eq.(6)). i.e., diagonal entries in covariance matrix Vij corresponds to variances (∆ϵi)2 and off diagonal entries correspond to covariances ∆ϵij. Hence, it is customary 

to publish covariance matrix along with mean values in the research articles pertained to experimental nuclear physics. 

 

3. Result and discussions 

Using the formalism outlined in Section. 2 and data presented in Section. 1, first generate table of partial uncertainties as 

presented in Table 2 . 

 

Table 2. Table of partial uncertainties (×106)[3]. 

l = 1 l = 2 l = 3 l = 4 

1.2356 0 0.058604 2.7801 

1.1132 0 0.052798 2.5047 

1.5048 3.0096 0.565202 7.5240 

2.5380 26.6490 3.807952 19.0350 

0.9278 13.9170 2.784096 13.9170 

2.9348 11.7392 2.201650 11.0055 

1.2945 7.3355 1.294824 6.4725 

1.6124 5.2403 1.209602 6.0465 

0.7362 5.8896 1.104576 5.5215 

0.9960 7.3040 0.996249 4.9800 

0.6568 4.9260 0.985446 4.9260 

0.5366 3.4879 0.805101 4.0245 

In order to save space micro-correlation matrices are not presented here, micro-correlation matrices for attribute l = 1 and 

l = 2 are identity matrices of order 12 × 12, whereas micro-correlation matrices for attribute 3 and 4 are not simple 

identity matrices. Interested readers are referred to [3] to learn more about micro-correlation matrices. From the table of 

partial uncertainties, generate 12× 12 diagonal matrices of partial uncertainties. A matrix computation represented by 

Eq.(7) generates 12×12 covariance matrices, square root of diagonal entries represents uncertainties in efficiencies. The 

result is presented in table 3. 

 

4. Conclusions 

The analysis presented in this paper on the generation of covariances in the context of efficiency calibration is also 

applicable in the experiments to determine reaction cross-sections. In the published articles and EXFOR database required 

information for covariance analysis and data evaluation is missing in maximum cases. The method presented in this paper 

will be applied to selected data files of EXFOR in future. 

 

Table 3. Calculated efficiencies and their uncertainties expressed in percentage. 

Line No. {ϵ} × 10⁴ ∆ϵ /{ϵ} × 100 

1 3.089 1.0 

2 2.783 1.0 

3 5.016 1.6 

4 12.69 2.6 

5 9.278 2.1 

6 7.337 2.2 

7 4.315 2.3 

8 4.031 2.0 

9 3.681 2.2 

10 3.320 2.7 

11 3.284 2.1 

12 2.683 2.0 
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