

Content is available at: CRDEEP Journals

Journal homepage: http://www.crdeepjournal.org/category/journals/ijls/

International Journal of Life Sciences

(ISSN: 2277-193x) (Scientific Journal Impact Factor: 6.106)

UGC Approved-A Peer Reviewed Quarterly Journal

Review Research Paper

Phytochemical Diversity and Antimicrobial Efficacy of *Origanum vulgare* L. Essential Oil: A Review

Dr. Shalini Singh¹

Assistant Professor, Department of Chemistry, Uttarakhand Open University, Haldwani, Uttarakhand, India.

ARTICLE DETAILS

Corresponding Author: Dr Shalini Singh

Key words:

Lamiaceae, *Origanum* vulgare L., Essential oils, antimicrobial activity, Thymol, Carvacrol

ABSTRACT

The Lamiaceae family is known for its rich diversity and valuable compositions of essential oils. *Origanum vulgare* L.is recognized for their strong aromatic qualities and therapeutic uses. These oils are rich in bioactive molecules such as thymol and carvacrol. Constitutes like linalool, γ -terpinene, and sabinene hydrate contribute as important part in the essential oil and contribute to many health benefits. Due to its aromatic and medicinal properties, oregano is used widely in also in the pharmaceutical, cosmetic, and wellness industries. A wide range of diversity in the essential oil composition of the *Origanum vulgare* L. has been reported. Caryophyllene oxide, sabinene, caryophyllene oxide–(E)- β -caryophyllene, (E) β -caryophyllene, carvacrol, and thymol–carvacrol were the chemotypes discovered from many countries. The essential oil of *Origanum vulgare* L. has exhibited strong antimicrobial activity, making it a promising natural alternative to synthetic agents. This study supports the identification of active constituents across various chemotypes and emphasizes the potential of natural remedies as safer alternatives to synthetic treatments.

1. Introduction

The Lamiaceae family, common across many parts of the world, is defined by distinctive botanical characteristics such as square-shaped stems, opposite leaf arrangement in a decussate pattern, and two-lipped tubular flowers [1]. A large number of species in this family are known for their fragrance and have historically been important in both folk remedies and modern healthcare [2]. Origanum genus belongs to family Lamiaceae includes a diverse range of herbaceous, shrubby, and perennial species renowned for their strong aromatic qualities and therapeutic uses[3]. The name "oregano" is derived from the Greek terms "oreos" meaning mountain and "ganos" meaning delight or beauty, symbolizing "joy of the mountain" [4]. These plants naturally grow in warm, hilly regions. Origanum vulgare L., commonly known as oregano or wild marjoram, is the most widely recognized and commercially important species. Origanum vulgare L., also known as Vantulsi or Badri tulsi. Oregano (Origanum vulgare L.) has one of the broadest natural distributions among its genus, extending from the Mediterranean basin through much of Europe and into Central Asia. Its native habitat spans Southern, Central, and Eastern Europe.

The species is also indigenous to parts of North Africa, including Algeria, Tunisia, and Morocco [5]. In Asia, it ranges widely from the Middle Eastern countries of Iran and Iraq to the Indian subcontinent, including India, Pakistan, and Nepal, and stretches further into regions like Tibet, China, and Siberia. The natural range of oregano extends to island areas such as the Azores, Balearic Islands, and Canary Islands [6]. The plant is well known for its strong essential oils, which stored in small glandular hairs on the leaves and flowers. These oils are rich in bioactive molecules such as thymol and carvacrol play a key role in fragrance and flavor in Oregano, on the other hand provides health benefits like antibacterial, antioxidant, and anti-inflammatory effects. Constitutes like linalool, γ -terpinene, and sabinene hydrate contribute as important part in the essential oil and contribute to many health benefits [7]. Due to its aromatic and medicinal properties, oregano is used widely in also in the pharmaceutical, cosmetic, and wellness industries. This study aims to analyze the

Received: 13-June-2025; Sent for Review on: 18-June-2025; Draft sent to Author for corrections: 28-June-2025; Accepted on: 04-July-2025; Online Available from 10-July-2025

DOI: 10.13140/RG.2.2.22736.01285

ILS-8889/© 2025 CRDEEP Journals. All Rights Reserved.

 $^{^1\!\}text{Corresponding Author}$ can be contacted at shalinisingh@uou.ac.in

chemical composition of *Origanum vulgare* L. essential oil (OVO), evaluate the variation in essential oil composition across various countries, and assess their antimicrobial activities.

2. Methodology

This review selected papers in the PubMed, and Google Scholar databases that comprised the last 15 to 20 years publications. The descriptors chosen to find the selection of studies were "Chemosystematics *Origanum vugare* L.", Chemical composition of Origanum vulgare L. "Antibacterial activity", "Antifungal activity", "Antiviral activity" and Anti parasitic activity of *Origanum vulgare* L.

3. Clasification of Origanum Vulgare L.

Kingdom:Plantae
Phylum:Streptophyta
Class:Equisetopsida
Subclass:Magnoliidae
Order:Lamiales
Family:Lamiaceae
Genus:Origanum

Species: Origanum vulgare

4. Essential Oil Composition of Origanum Vulgare L. Its Chemosystematics

Raal, A. et al., (2024) studied a total of 17 samples of O. vulgare aerial parts from Estonia, Turkey, Scotland, Moldova, and Italy and reported six chemotypes of O. vulgare rich in (1) caryophyllene oxide; (2) sabinene; (3) caryophyllene oxide–(E)β-caryophyllene; (4) (E) β-caryophyllene; (5) carvacrol, and (6) thymol-carvacrol[8]. Giuseppe De Mastroet al. (2017) reported two main groups and three subgroups from the 25 wild populations of Origanum vulgare L. samples, growing wild in different locations of Calabria Region (Southern Italy). The first group consisted of acyclic (linalool/linalyl acetate) chemotypes with a predominant presence of linally acetate; the second was characterized by chemotypes rich in cymylcompounds, mainly carvacrol, thymol and γ-terpinene [9]. Three chemotypes the first, primarily containing carvacrol/thymol; the second, with thymol/alpha-terpineol; the third, characterized by linally acetate and linalool were identified from the essential oils obtained from inflorescences of three Origanum vulgareL.ssp. hirtum (Link) letswaart samples, growing wild in different locations in Campania (Southern Italy)[10]. Essential oil composition of 502 individual of European O. vulgare were identified. The monoterpene mainly consisted of sabinene, myrcene, p-cymene, 1,8cineole, β -ocimene, γ -terpinene, sabinene hydrate, linalool, α -terpineol, carvacrol methyl ether, linalyl acetate, thymol and carvacrol. Sesquiterpenes often present in higher amounts were β -carvophyllene, germacrene D, germacrene D-4-ol, spathulenol, caryophyllene oxide and oplopanone. Overall, three different main monoterpene chemotypes were defined (1)cymyl-compounds (2)sabinyl-compounds and (3) acyclic linalool/linalyl acetate The cymyl- and the acyclic pathway were usually active in plants from the Mediterranean climate whereas an active sabinyl-pathway was a characteristic of plants from the Continental climate [11]. Morshedloo, M.R. et al. (2018) reported four chemotypes chemotype I (carvacrol), chemotype II ((Z)-alpha-bisabolene), chemotype III (linalyl acetate), chemotype IV (caryophyllene oxide/germacrene D/(E)-beta-caryophyllene) among seven populations of Iranian oregano [12]. Carvacrol, one of the major compounds in the essential oil of Origanum vulgare L., has been reported in many countries[13-19]. Shweta Goyalet al., 2021 and M. Vazirianet al., 2015, reported thymol as a major component in the oil composition of Origanum vulgareL. [20-21]. Mohammad Reza Morshedlooet al. 2018, classified the four main chemotypes: i.e., chemotype I (carvacrol), chemotype II ((Z)- α -bisabolene), chemotype III (linalyl acetate), chemotype IV (caryophyllene oxide/germacrene D/(E)- β caryophyllene) from Iranian oregano[22]. The oxygenated sesquiterpene caryophylleneoxide (7.4-49.9%) was predominant in all the essential oil samples. Other major constituents were sesquiterpene hydrocarbon-germacrene D (8.4–22.5%) and (E)-caryophyllene (8.5–10.8%), monoterpene hydrocarbon-sabinene (1.6–7.7%), and oxygen containing monoterpenes-terpinen-4-ol (1.5-7.0%)[23]. Călin Jianu.et al. 2023, identified main compounds gammaterpinene(22.96%), para-cymene (14.72%), ger-macrene (11.64%), beta-trans-ocimene (9.81%), and cis-beta-ocimene (7.65%) in Origanum vulgare var. aureum L. essential oil [22], y-muurolene one of the chemotype of O.vulgare L. has been reported from Uttarakhand India in 2000[25]. Carvacrol (37.5%), thymol (22.7%) and p-cymene (7.6%) were detected as main compounds of *O. acutidens*; carvacrol (30.8%), thymol (26.8%) and γ-terpinene (12.1%) were detected as the major constituents of *O. vulgare* subsp. Gracile from Turkey[26]. Germacrene D (17.01%); β-caryophyllene (13.05%); carvacrol (11.65%); sabinene (9.78%); trans- ocimene (9.38%); cis -ocimene (6.03%), and γ -elemene (4.10%) were reported O.vulgare ssp. vulgare oil from Moldova[26]. Brigitte Lukaset al., 2008, identified three chemotypes 274 individual plants belonging to 13 populations of Origanum vulgare L. (Lamiaceae) from Corsica i.e., a 'cymyl' type, with either carvacrol (0.6-65.5%) or thymol (0.0-49.5%) as the main compound, 'sabinyl' type with sabinene (7.8-20.2%) and cis-sabinene hydrate (0.7–24.8%) as main compounds, 'mixed' type combining compounds of the 'cymyl' and the 'sabinyl' pathway. The 'mixed' type was rich in cis-sabinene hydrate (0.0-52.4%) and y-terpinene (0.6-35.4%) [27], para-cymene (25.615%), thymol (23.129%), carvacrol (20.321%) were determined main components of O. vulgare L. ssp. glandulosum (Desf.) Ietswaart from Algeria [28]. Vijay K. Kaulet al. 1996 reported linalool (23.8%), myrcene (18.0%), β-caryophyllene (9.06%), germacrene-D (7.4%) and terpinen-4-ol (4.4%) were found as the major compounds from north India [29]. Maria M. Carmoet al. 1989 reported two chemotype linalool (36.85%). And thymol (31.86%) from Origanum vulgare growing wild in Portugal[30].

5. Antibacterial effect of Origanum Vulgare L.

The antimicrobial effect of Origanum Vulgare L. essential oils (OVO) vapors against pathogens and spoilage bacteria was assessed which showed that it could be used for the microbial decontamination of food-contact surfaces in some controlled parameters[31]. A good antibacterial activity of OVO has been reported against MDR bacteria as well as with Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumonia, Staphylococcus aureus, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus mutans, Enterobacter aerogenes, and Pseudomonas aeruginosa [32-35]. Essential oil of Origanum vulgare could be used as a natural antimicrobial against S. aureus and E. coli infections because it showed a strong antimicrobial activity with a minimum inhibitory concentration (MIC) of 1.90 mg/mL for S. aureus and 0.49 mg/mL for E. coli after 18 h incubation [36]. According to BirolÖzkalpet al.oregano oil possessed strong antimicrobial activity compared with the antibiotic. Gram-positive bacteria were more sensitive to the antimicrobial agent in spice than Gram-negative ones[37]. A study showed the antimicrobial effect ofOVOagainst Escherichia coli, Staphylococcus aureus, and filamentous fungi in ripening Minas cheese. OVO at 0.02% (v/v) successfully eliminated all tested pathogens and fungi without affecting pH or moisture, highlighting its potential as a natural preservative in cheese production [38]. Omkulthom Al kamalyet al. investigated antimicrobial efficacy against many microbial proteins, including tyrosyl-tRNA synthetase (TyrRS), DNA gyrase, and dihydrofolate reductase (DHFR) using molecular docking which indicated that OVO can be used as a nutraceutical to treat infectious diseases [39]. Antimicrobial activity in vitro of the essential oil of oregano was evaluated by Nora Mahfouf2017, suggested that it may be a useful alternative to antibiotics for the control of the infections caused by Acinetobacter spp. [40]. According to Nedzad Prazina et al., Bacillus subtilis, Staphylococcus aureus, and Staphylococcus saprophyticus showed the highest sensitivity to oregano oil. In comparison to the antibiotic ampicillin, oregano oil exhibited superior antimicrobial effectiveness[41].

6. Antifungal effect of Origanum Vulgare L.

Oregano essential oil was tested against Aspergillus niger, Penicillium claviforme, Saccharomyces cerevisiae, Candida albicans 8673, Candida glabrata 72showed significant antifungal activity. The activity was concentration-dependent, higher concentrations led to stronger antifungal effects. In this study Oregano extract exhibits both fungistaticand fungicidal effects [42]. Bhat Vet.al, 2018, reported that Origanum vulgare essential oil (OVO) is highly effective against oral Candida isolates from denture wearers. Essential oil demonstrated greater antifungal potency than fluconazole, may be due to the presence of carvacrol-like compounds [43]. In one of the studies OVO was treated against human fungal pathogen Malassezia furfur, Trichophyton rubrum and Trichosporonbeigelii. At a 1/50,000 dilution, it caused a 95% reduction in metabolically active fungal cells within 6 hours of exposure [44].

Nanoemulsions encapsulated OVO was tested against *Cladosporium* sp., Fusarium sp., *Penicillium* sp. to evaluate the antifungal activity which showed that **nanoencapsulated oregano essential oil hasantifungal potential** against common cheese-contaminating fungiespecially if storage conditions are controlled [45].

YunZhaoet al. 2021, reported that Botrytis cinerea in vitro mycelial growth and spore germination were strongly inhibited by the OVO and two of its main components, thymol and carvacrol. It is **nontoxic** and **environmentally friendly**, and can be used as **natural fungicide** for **postharvest protection** of fruits like tomatoes against gray mold [46]. At a concentration of 0.25 mg/ml, OVO completely inhibited the growth of Candida albicans. Its in vitro efficacy was comparable to standard antifungal drugs, nystatin and amphotericin B. No toxicity was observed in the animal model, making it a promising candidate for natural antifungal therapy[47]. Asmaa Alhussein Mohamed et al. 2025, studies the efficiency of mixture of essential oil of oregano, moringa, and cinnamon and individually to inhibited fungal growth on historic wall paintings. They reported that oregano oil showing the strongest individual activity and minimal pigment impact [48]. OVO can be used as a natural alternative to conventional antifungal treatments, supporting safer and more sustainable options for improving animal health against Aspergillus niger, Aspergillus fumigatus, and Talaromycesmarneffeietc. [49]. OVO showed strong antifungal potential for the Malassezia furfur, a yeast causes human skin infections [50]. Doaallah O et al. 2024, studiedthat OVO promising natural antifungal that is effective against vulvovaginal candidiasis, the most common fungal infection in women, with increasing cases of azole resistance and recurrence [51]. Priscila Dias da Silva Vaz et al. 2022, studied Origanum Vulgare extracts for anthracnose control in common beans and found that extracts show strong antifungal activity and safety for plant use, offering a promising, eco-friendly alternative for sustainable anthracnose management in beans[52].

7. Antiviral effect of Origanum vulgare L.

Daiane Einhardt Blank et al. 2019 evaluated the antiviral activity of aqueous and ethanolic extracts of *Origanum vulgare* (oregano) against veterinary viruses, and assess their cytotoxicity, results showed that both aqueous and ethanolic extracts had antiviral activity against Canine distemper virus (CDV) while ethanolic extract had stronger antiviral effect against Equine arteritis virus(EAV) [53]. Extracts of *Origanum vulgare showed* antiviral and virucidal activity against BoHV-1 which is a significant pathogen in cattle production [54]. Huidan Deng *et al.* 2024, for the first time to found out that oregano essential oil has anti-PVR effect in vivo and in vitro. It may be due to presence of the carvacrol as a major component in the oil composition [55]. Oregano oil-loaded nanogel effectively protects cells from Betacoronavirus 1 infection. It reduces viral replication and cytopathic effects and shows enhanced solubility and delivery of oregano oil [56]. Essential oils and hydrosols of Origanum vulgare L. has been studied which showed *O.vulgare* haspromising

antiphytoviral agents [57]. Cintia Hiromi Okino *et al.*2024 reported that *OVO* has strong antiviral potential against avian coronavirus, especially at higher concentrations [58].

8. Antiparasitic effect of *Origanum vulgare* L.

Oregano essential oil is antiparasitic. It is highly effective against *T. gondii* in vitro with low toxicity to host cells. The mechanism involves oxidative stress, mitochondrial dysfunction, and necrosis [59]. OVO demonstrates good antiparasitic activity against *Leishmania amazonensis*, both through direct parasite killing and favorable immune modulation, indicating its suitability for formulation into oral or topical therapies [60].OVO showed promising **anthelmintic activity** against gastrointestinal nematodes (GINs) in sheep, which are parasitic wormswhich makes this oil safe**and effective natural alternative to synthetic anthelmintic drugs** in veterinary practice[61].

9. Conclusion

Origanum vulgare L. demonstrates significantly tochemical diversity, as a result of genetic, environmental, and geographical factors. This diversity gives rise to characteristic chemotypes, each distinct by varying concentrations of key bioactive compounds such as carvacrol, thymol, p-cymene, and γ -terpinene. These variations significantly impact the antimicrobial efficacy of the essential oils derived from different O.vulgareL. chemotypes. Many studies have showed effectiveness against a wide range of microbial pathogens of O.vulgareL. essential oils against a range of pathogenic bacteria and fungi, suggesting to their effectiveness as naturally derived antimicrobial agents. Among the chemotypes, those rich in carvacrol and thymol tend to show the most potent antimicrobial effects. Future research should focus on developing cultivation strategies, chemotype identification methods, and technological approaches to improve and maintain the antimicrobial effectiveness of O.vulgare essential oils.

References

- 1. Ankita Maithani, Umesh Maithani and Maneesha Singh, Botanical description, cultivation practices, essential oil composition and therapeutic values of *Origanum vulgare* L. and its future prospective. Current Agriculture Research Journal2023;11 (2): 348-361.
- 2. Renata Nurzy´nska-Wierdak and Magdalena Walasek-Janusz, Chemical composition, biological activity, and potential uses of Oregano (*Origanum vulgare* L.) and oregano essential oil. Pharmaceuticals 2025; 18:267.
- 3. Kamran Javed Naquvi, Javed Ahamad, Afrin Salma, SHAnsari, AKNajmi, A Critical review on traditional uses, phytochemistry and pharmacological uses of *Origanum Vulgare* Linn. International Research Journal of Pharmacy 2019; 10 (3): 1-11.
- 4. Laura De Martino, Vincenzo De Feo, Carmen Formisano, Enrico Mignola and Felice Senatore, Chemical composition and antimicrobial activity of the essential oils from three chemotypes of *Origanum vulgare* L. ssp. hirtum (Link) Ietswaartgrowing wild in Campania (Southern Italy). Molecules 2009; 14: 2735-2746.
- 5. Saba Soltani , Abolfazl Shakeri , Mehrdad Iranshahi , MotaharehBoozari , A Review of Phytochemistry and Antimicrobial Properties of *Origanum vulgare* L. and Subspecies

Iran J Pharm Res 2021;20(2):268-285.

- 6. LukasB, SchmidererC & NovakJ, Essential oil diversity of European *Origanum vulgare* L. (Lamiaceae). Phytochemistry2015; 119: 32-40.
- 7. Paola Zinno, Barbara Guantario, Gabriele Lombardi, Giulia Ranaldi, Alberto Finamore, Sofia Allegra, Michele Massimo Mammano, Giancarlo Fascella, Antonio Raffo, and Marianna Roselli, Chemical composition and biological activities of essential oils from *Origanum vulgaregenotypes* belonging to the carvacrol and thymol chemotypes. Plants 2023; 12:1344.
- 8. Raal, A.,Gontova, T., Ivask, A., Orav, A.; Koshovyi. O.Yield, composition, and chemotypes of essential oils from *Origanum vulgare* L.aerial parts cultivated in different europeancountries. Agronomy2024; 14: 3046.
- 9. Giuseppe De Mastro, Waed Tarraf, Leonardo Verdini, Gianluca Brunetti, Claudia Ruta.
- Essential oil diversity of Origanum vulgare L. populations from Southern Italy. Food Chemistry 2017;235: 1-6.
- 10. Laura De Martino, Vincenzo De Feo, Carmen Formisano, Enrico Mignola, Felice Senatore, Chemical composition and antimicrobial activity of the essential oils from three chemotypes of *Origanum vulgare* L. *ssp. hirtum* (Link) letswaartgrowing wild in Campania (Southern Italy), *Molecules* 2009; 14(8):2735-2746.
- 11. Brigitte Lukas, Corinna Schmiderer, Johannes Novak. Essential oil diversity of European *Origanum vulgare* L. (Lamiaceae). Phytochemistry 2015;119: 32-40.
- 12. Morshedloo, M.R., Salami, S.A., Nazeri, V., Maggi, F., Craker, L. Essential oil profile of oregano (*Origanum vulgare* L.) populations grown under similar soil and climate conditions. Industrial Crops and Products 2018; 119: 183-190.
- 13. Afef Be'jaoui, He'dia Chaabane, Maroua Jemli, Abdennacer Boulila, and Mohamed Boussaid. Essential oil composition and antibacterial activity of *Origanum vulgare* subsp. Glandulosum Desf. at different phenological stages, J Med Food 2013;16 (12):1115–1120.
- 14. Merajuddin Khan, Shams T. Khan, Noor A. Khan, Adeem Mahmood, Abdulaziz A. Al-Kedhairy, Hamad Z. Alkhathlan. The composition of the essential oil and aqueous distillate of *Origanum vulgare* L. growing in Saudi Arabia and evaluation of their antibacterial activity, Arabian Journal of Chemistry 2018; 11:1189–1200.
- 15. Ba'rbara Teixeira, Antonio Marques, Cristina Ramos, Carmo Serrano,Ol'ıvia Matos, Nuno R Neng, Jose'MF Nogueira, Jorge Alexandre Saraiva and Maria Leonor Nunes Chemical composition and bioactivity of different oregano (*Origanum vulgare*) extracts and essentialoil.J. Sci. Food Agric 2013; 93: 2707–2714.

- 16. Sonia Heni, Hicham Boughendjioua, Salima Bennadja, Abdelghani Djahoudi. Essential oil composition of *Origanum vulgare* and its application in substitution of synthetic chemical additives. Journal of Phytology 2021, 13: 95-100.
- 17. Fethi Ahmet Özdemir, Ömer Kiliç, Essential oil composition of two *Origanum* L. taxa from Bingol (Turkey). Progress in Nutrition 2017; 19 (1): 80-84.
- 18. Mudasir A. Sheikh and Shayista Chishti, Variation in the essential oil of Origanum vulgare (L) growing at different geographical locales of Kashmir Himalayas, India, World J Pharm Sci 2016; 4(2): 247-251.
- 19. Merajuddin Khan, Shams T. Khan, Mujeeb Khan, Ahmad A. Mousa, Adeem Mahmood and Hamad Z. Alkhathlan, Chemical diversity in leaf and stem essential oils of *Origanum vulgare* L. and their effects on microbicidal activities. AMB Expr 2019; 9:176,1-15.
- 20. Mudasir A. Sheikh and Shayista Chishti, Variation in the essential oil of *Origanum vulgare* (L) growing at different geographical locales of Kashmir Himalayas, India. World J Pharm Sci 2016; 4(2): 247-251.
- 21. M. Vazirian, M. Mohammadi, M.H. Farzaei, G. Amin, Y. Amanzadeh, Chemical composition and antioxidant activity of *Origanum vulgare* subsp. vulgare essential oil from Iran. Research Journal of Pharmacognosy 2015; 2(1): 41-46.
- 22. MohammadReza Morshedloo, SeyedAlireza Salami, Vahideh Nazeri, Filippo Maggi, Lyle Craker, Essential oil profile of oregano (*Origanum vulgare* L.) populations grown under similar soil and climate conditions. Industrial Crops and Products 2018; 119:183-190.
- 23. Zoran Ilic, Ljiljana Stanojevic, Lidija Milenkovic, Ljubomir Šunic, Aleksandra Milenkovic, Jelena Stanojevic and Dragan Cvetkovic, The yield, chemical composition, and antioxidant activities of essential oils from different plant parts of the wild and cultivated Oregano (*Origanum vulgare* L.). Horticulture 2022; 8 (1042): 1-18.
- 24. Călin Jianu, Alexandra Teodora Lukinich-Gruia, Matilda Rădulescu, Marius Mioc, Alexandra Mioc, CodrutaSoica, Albert Titus Constantin, Ioan David, Gabriel Bujancă and Roxana Ghircău Radu. Essential oil of *Origanum vulgare* var. aureum L. from western Romania: chemical analysis, in vitro and in silico screening of its antioxidant activity. Appl. Sci. 2023; 13 (5076): 1-15.
- 25. Chitra Pande and C. S. Mathela, Essential oil composition of *Origanum vulgare* L. ssp. vulgare from the Kumaon Himalayas. Journal of essential oil research2000; 12: 441-442.
- 26. Gonceariuc Maria, Balmuş Zinaida, Sandu Tatiana, Romanciuc Gabriela, Gonceariuc Natalia, Essential oil of *Origanum vulgare* ssp. vulgare L. and *Origanum vulgare* ssp. hirtum (Link) Ietswaart from Moldova: Content and chemical composition. International Journal of Agriculture Innovations and Research 2014; 3, (2),659-663.
- 27. Brigitte Lukas, Corinna Schmiderer, Ulrike Mitteregger, Chlodwig Franz and Johannes Novak, Essential oil compounds of *Origanum vulgare* L. (Lamiaceae) from Corsica. Natural Product Communications 2008; 3 (7):1127-1131.
- 28. Bouhaddouda N, Aouadi S, Labiod R, Evaluation of chemical composition and biological activities of essential oil and methanolic extract of *Origanum vulgare* L. ssp. glandulosum (Desf.) Ietswaart from Algeria. International Journal of Pharmacognosy and Phytochemical Research 2016; 8(1):104-112.
- 29. Vijay K. Kaul, Bikram Singh, Ram P. Sood, Essential Oil of Origanum vulgare L. from North India. Journal of Essential Oil Research 1996;8(1):101-103.
- 30. Maria M. Carmo, Silvia Frazão, F. Venancio, The chemical composition of Portuguese Origanum vulgare oils. Journal of Essential Oil Research 1989; 1(2):69-71.
- 31. Loris Pinto, Salvatore Cervellieri, Thomas Netti, Vincenzo Lippolis and FedericoBaruzzi, Antibacterial activity of oregano (*Origanum vulgare* L.) essential oil vapors against microbial contaminants of food-contact surface. Antibiotics 2024; 13 (371):1-15.
- 32. Mohsen L, Jaber H, Kamel WM., Antibacterial activity of the essential oil isolated from *Origanum vulgare* L. (Lamiaceae) against multi-drug resistant bacteria. International Journal of Drug Delivery Technology2022;12(1):81-84.
- 33. ArmenuhiMoghrovyanand Naira Sahakyan, Antimicrobial activity and mechanisms of action of *Origanum vulgare* L. essential oil: effects on membrane-associated properties. AIMS Biophysics2024, 11(4): 508–526.
- 34. Ram S. Verma, Rajendra C. Padalia, Dharmendra Saikia, Amit Chauhan, Vinay Krishna, Antibacterial activity of *Origanum vulgare* L. populations of Indian origin. Journal of Biologically Active Products from Nature2012; 2 (6): 353 359.
- 35. L. Brito-Juniora, H. C. Britob , M. M. Simõesa, B. Santosa, F. M. C. Marquesa, M. A. A. Medeirosa, M. S. Alvesa, J. H. A. Fariasa, C. T. Pereiraa, A. F. Dinizc, A. A. Oliveira-Filhoc and V. L. R. Vilelac , Evaluation of the antibacterial activity of essential oils from oregano (*Origanum vulgare*) against *Escherichia coli* strains isolated from meat products. Brazilian Journal of Biology2024; 84: 1-7.
- 36. Sonia Tejada-Muñoz, Denny Cortez, Jesús Rascón, Rosa J. Díaz-Manchay, Julio Sandoval-Bances, Segundo G. Chavez, Sonia Huyhua-Gutierrez, Stella M. Chenet and Rafael Tapia-Limonchi, Antimicrobial activity of *Origanum vulgare* essential oil against *Staphylococcus aureus* and *Escherichia coli*. Pharmaceuticals 2024: 17, 1430.
- 37. Birol Özkalp, Fatih Sevgi, Mustafa Özcan and Mehmet Musa Özcan, The antibacterial activity of essential oil of oregano (*Origanum vulgare* L.). Journal of Food, Agriculture & Environment2010;8 (2): 272-274.
- 38. Anna Carolina Leonelli Pires de Campos, Renata Daniela Saldanha Nandi, Sara Scandorieiro, Marcelly Chue Gonçalves, Guilherme Fonseca Reis, Miriam Dibo, Leonardo Pinto Medeiros, Luciano Aparecido Panagio, Eder Paulo Fagan, Renata Katsuko Takayama Kobayashi, Gerson Nakazato, Antimicrobial effect of *Origanum vulgare* L. essential oil as an alternative for conventional additives in the Minas cheese manufacture. LWT- Food Science and Technology 2022;157.
- 39. Omkulthom Al kamaly1, AshwagS.Alanazi, Raffaele Conteand Hamada Imtara, Phytochemical composition and insight into antibacterial potential of *Origanum vulgare*essential oil from Saudi Arabia using in vitro and in silico approaches. Processes 2023; 11 (650): 1-14.

- 40. Nora MahfoufAntibacterial activity of the essential oil of *Origanum vulgare* L. against strains of *Acinetobacter* spp.Journal Food Process Technol 2017; 8:8 (Suppl).
- 41. Nedzad Prazina, Azra Bacic, Vildana Hadzic-Hasanovic and Omer Mahmutovic, The antibacterial activity of essential oil of oregano (*Origanum vulgare* L.) from Bosnia and Herzegovina against selected ATCC strains. Plant Cell Biotechnology and Molecular Biology 2021; 22(15&16):140-144.
- 42. I Yotova and Ignatova-Ivanova Ts, In vitro Study of Antifungal Activity of Oregano (*Origanum vulgare*). Int. J. Curr. Microbiol. App. Sci 2015; 4(3): 321-326.
- 43. Bhat V, Sharma SM, Shetty V, Shastry CS, Rao CV, Shenoy S, Characterization of herbal antifungal agent, Origanum vulgare against oral Candida spp. isolated from patients with Candida-Associated denture stomatitis: An In vitro study. Contemp Clin Dent 2018;9: S3-10.
- 44. Konstantia Adam, Afroditi Sivropoulou, Stella Kokkini, Thomas Lanaras, and Minas Arsenakis, Antifungal Activities of *Origanum vulgare* subsp. hirtum, *Mentha spicata*, *Lavandula angustifolia*, and *Salvia fruticosa* essential oils against human pathogenic fungi. J. Agric. Food Chem. 1998; 46:1739–1745.
- 45. Carolina M. Bedoya-Sernaa, Gustavo C. Dacanala, Andrezza M. Fernandesb, Samantha C. Pinho Antifungal activity of nanoemulsions encapsulating oregano (*Origanum vulgare*) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian Journal of microbiology 2018; 49: 929-935.
- 46. Yun Zhao, Yun-Hai Yang, Min Ye, Kai-Bo Wang, Li-Ming Fan, Fa-Wu Su, Chemical composition and antifungal activity of essential oil from *Origanum vulgare* against Botrytis cinerea. Food Chemistry 2021; 365,130506:1-10.
- 47. Vijaya Manohar, Cass Ingram, Judy Gray, Nadeem A. Talpur, Bobby W. Echard, Debasis Bagchiand Harry G. Preuss, Antifungal activities of Origanum oil against *Candida albicans*. Molecular and Cellular Biochemistry 2001; 228: 111–117.
- 48. Asmaa Alhussein Mohamed, Mahgoub A. Ahmed, Abdallah S. Korayem, Samah H. Abu-Hussienand Wael Bakry Rashidy, Antifungal, toxicological, and colorimetric properties of Origanum vulgare, Moringa oleifera, and Cinnamomum verum essential oils mixture against Egyptian Prince Yusuf Palace deteriorative fungi, BMC Biotechnology (2025) 25.
- 49. J. F. Rama, A. C. Coelho and F. M. Leal, Testing the potential antifungal activity of *Origanum vulgare* against *Aspergillus fumigatus*, *Aspergillus niger* and *Talaromycesmarneffei* isolated from pets. Veterinarska Stanica 2024; 55(5).
- 50. Vittorio Vinciguerra, Florencia Rojas, Viviana Tedesco, Gustavo Giusiano and Letizia Angiolella, Chemical characterization and antifungal activity of *Origanum vulgare, Thymus vulgaris* essential oils and carvacrol against Malassezia furfur. Natural Product Research 2018: 1-5.
- 51. Doaallah O. Diab, Marwa S. Fathy, Nashwa ElSaid, Soha A. ElhadyYasmin M. Ahmed, Evaluation of antifungal activity of *Origanum vulgare* essential oil and its influence on CDR1 gene expression among *Candida albicans* in vulvovaginal candidiasis. Microbes and Infectious Diseases 2024; 5(4): 1654-1666.
- 52. Priscila Dias da Silva Vaz, Waléria Ramos Nogueira de Souza, Adriane Wendland, Andressa Tuane Santana Paz, Marcio Vinicius de Carvalho Barros Côrtes, Maria Teresa Freitas Bara, Antifungal activity of *Origanum vulgare* and *Rosmarinus officinalis* phenolics containing extracts against *Colletotrichum lindemuthianum* and in the suppression of anthracnose in common beans. Research, Society and Development2022; 11, (9).
- 53. Daiane Einhardt Blank, Silvia de Oliveira Hübner, Gabriela Hörnke Alves, Claudia Andrea Lima Cardoso, Rogério Antonio Freitag, Marlete Brum Cleff, Chemical composition and antiviral effect of extracts of *Origanum vulgare*. Advances in Bioscience and Biotechnology 2019; 10: 188-196.
- 54. Picoli, T, Waller, SB, Hoffmann JF, PeterCM, BarcelosL da S, Lopes MG, FariaROde, CleffM, HübnerS de O, LimaM de and FischerG, Antiviral and virucidal potential of *Origanum vulgare* Linn. (oregano) extracts against *Bovine alphaherpesvirus* 1(BoHV-1. Research, Society and Development2021;10 (5).
- 55. Huidan Deng, Youtian Deng, Tianhao Song, Lianfeng Pang, Song Zhu, Zhihua Hongrui Guo, Zhiwen Xu, Ling Zhu, Yi Geng, Ping Ouyang, Ran He, Junliang Deng, Evaluation of the activity and mechanisms of oregano essential oil against PRV in vivo and in vitro. Microbial Pathogenesis 2024; 194, 106791.
- 56. LyubomiraRadeva, MayaM.Zaharieva, Sevda Naydenska, Pelagia Foka, Efthymia Ioanna Koufogeorgou, Urania Georgopoulou, Stanislav Philipov, Erini Karamichali, Alexander Kroumov Hristo Najdenski, Ivanka Spassova, Daniela Kovacheva and KrassimiraYoncheva, Loading of oregano oil in natural nanogel and preliminary studies on its antiviral activity on Betacoronavirus 1. Molecules 2025; 30 (1939): 1-15.
- 57. Taglienti A, Donati L, Ferretti L, Tomassoli L, Sapienza F, Sabatino M, Di Massimo G, Fiorentino S, Vecchiarelli V, Nota P and Ragno R, In vivo antiphytoviralactivity of essential oils and hydrosols from *Origanum vulgare, Thymus vulgaris*, and *Rosmarinus officinalis* to Control zucchini yellow mosaic virus and tomato leaf curl New Delhi virus in *Cucurbita pepo* L. Front. Microbiol. 2022; 13, 840893.
- 58. Cintia Hiromi Okino, Glaucia Roberta Melito, Maria Eduarda de Almeida Astolfo, Maria Eduarada da Mata Martins, Stanislau Bogusz Junior, Marcos David Ferreira, Antiviral effect of different essential oils on avian coronavirous. Avian Diseases 2024; 68(3): 254-258.
- 59. Paulina Nunes A, Dos Santos YM, da Silva Sanfelice RA, Marcia Concato-Lopes V, Felipe Silva T, Tomiotto-Pellissier F, Lazarin-Bidoia D, Regina Beltrame Machado R, de Barros LD, Luis Garcia J, Conchon-Costa I, Rogério Pavanelli W, Katsuko Takayama Kobayashi R, de Freitas Barbosa B, Amália Vieira Ferro E, Nazareth Costa I, Essential oil of oregano (*Origanum vulgare* L.) reduces infection and proliferation of *Toxoplasma gondii* in BeWo cells with induction of autophagy and death of tachyzoites through a mechanism similar to necrosis.Parasitol Res. 2024;123(6):242.
- 60. Fernanda Tomiotto-Pellissier, Bruna Taciane da Silva Bortoleti, Virgínia M´arciaConcato, Ana Flavia ´Marques Ganaza, Ana Carolina Quasne, Beatriz Ricci, Pedro Vinicius Dolce e Carvalho, Gustavo Henrique Della Colleta, Danielle Lazarin-Bidoia, Taylon Felipe Silva, Manoela Daiele Gonçalves, Renata Katsuko Takayama Kobayashi, Gerson Nakazato, Idessania

Nazareth Costa, Ivete Conchon-Costa, Milena Menegazzo Miranda-Sapla, Wander Rog´erioPavanelli, The cytotoxic and anti-leishmanial activity of Oregano (*Origanum vulgare*) essential oil: An in vitro, in vivo, and in silico study. Industrial Crops & Products 2022; 187, 115367.

61. Filip Štrbac, Slobodan Krnjajic, Dejan Orcic, Maria Paola Maurelli, Dragica Stojanovic, Nataša Simin, Radomir Ratajac, Kosta Petrovic, Goran Kneževic, Giuseppe Cringoli, Laura Rinaldiand Antonio Bosco, A potential anthelmintic phytopharmacological source of *Origanum vulgare* (L.) essential oil against gastrointestinal nematodes of sheep. Animals 2023; 13 (45): 1-16.