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1. Introduction 

Nanoscale medication delivery has revolutionized the medical and pharmaceutical industries. Nanocarriers can improve 
cancer treatment medicine delivery, stability, and targeting. Therapeutic compounds can be enclosed by 1–1000 
nanometer nanocarriers. Due to their small size and high surface area-to-volume ratio, nanocarriers boost drug solubility 
and prolong active chemical release (Allen & Cullis, 2013). Cancer is a global killer. Traditional chemotherapy is effective 
but has serious side effects due to its non-selectivity. Chemotherapy doesn't target cancer cells or tissues; therefore, it can 
harm healthy cells and induce nausea, immunosuppression, and hair loss (Gao et al., 2015). In contrast, specialized 
medication delivery systems target cancer cells to boost therapeutic index. Targeting approaches exploit cancer cells' 
altered metabolic pathways or overexpressed receptors to deliver drugs to tumors. Despite advances, off-target effects, 
medication resistance, and inefficient targeting hamper clinical success (Danhier et al., 2012). 
 
AI has helped drug discovery, formulation, and tailored medicine succeed. Machine learning (ML) algorithms—a subset of 
AI—optimize drug loading, nanocarrier stability and release patterns, and drug-nanocarrier interactions. Artificial 
intelligence can find insights and patterns in massive data sets that would be difficult to find via experimental methods. 
Nanoparticle biodistribution, cellular absorption, and pharmacokinetics are modeled and predicted using AI in medicine 
delivery. AI methods can adjust nanocarrier size, surface charge, and drug release kinetics to improve tumor drug delivery 
(Mikolajczyk et al., 2018). AI is also needed to build multi-functional nanocarriers that carry chemotherapeutic 
medications and boost therapeutic effects through synergistic interactions (Ravichandran et al., 2020). Nanocarriers offer 
promise for targeted drug delivery, but we have a long way to go before we can safely, efficiently, and inexpensively 
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The advancement of nanotechnology has paved the way for innovative drug delivery 
systems, particularly in the treatment of cancer. This study explores the formulation and 
optimization of a novel nanocarrier system designed for the targeted delivery of anticancer 
drugs, leveraging artificial intelligence (AI) to enhance precision and efficacy. The primary 
aim is to improve the therapeutic index of chemotherapy drugs by minimizing systemic side 
effects and increasing drug accumulation at the tumor site. The AI-driven approach involves 
the use of machine learning algorithms to predict optimal nanocarrier properties such as 
size, surface charge, and drug loading capacity, ensuring maximum drug release at the target 
site. Various nanocarriers, including liposomes, dendrimers, and nanoparticles, are 
synthesized, and their performance is evaluated based on stability, biocompatibility, and 
targeting efficiency. The formulation is further optimized using AI algorithms, which enable 
real-time adjustments and predictions based on experimental data. In vitro and in vivo 
studies demonstrate the enhanced targeting ability and therapeutic outcomes of the 
developed nanocarrier system compared to traditional drug delivery methods. This AI-based 
approach offers a promising solution for overcoming the limitations of conventional cancer 
therapies, presenting a step forward in personalized medicine. 
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deliver anticancer drugs. Many nanocarrier systems have been studied, but optimizing them has required expensive and 
time-consuming trial and error. This work focuses on developing polymeric nanoparticles as nanocarriers for anticancer 
medicines. Artificial intelligence methods, including machine learning models, will optimize formulation factors such as 
particle size, drug loading efficiency, surface charge, and release kinetics. Experimental validation will include in vitro cell 
culture and in vivo animal models. Cytotoxicity, cellular uptake, and drug release characteristics will be tested in vitro. AI-
optimized nanocarriers' pharmacokinetics, biodistribution, and tumor growth suppression will be studied in living 
creatures. AI optimization will use deep learning and machine learning models using experimental data to predict the best 
formulations. This AI-driven technique can reveal how nanocarrier properties affect drug delivery and therapeutic 
outcomes. 
 

2. Materials and Methods 

2.1 Synthesis and Characterization of Nanocarriers 

This research focuses on developing a novel nanocarrier system using polymer-based nanoparticles (PNPs) due to their 
high biocompatibility and ability to encapsulate hydrophobic drugs. Poly(lactic-co-glycolic acid) (PLGA) was used for 
formulation, followed by solvent evaporation. Techniques like dynamic light scattering, surface charge measurement, 
morphology observation, and high-performance liquid chromatography were used to characterize the nanocarriers. The 
encapsulation efficiency (EE) was calculated using the ratio of the drug encapsulated in the nanoparticles to the total drug 
used in the formulation. 
 

2.2 Anticancer Drugs Used 

This study incorporated Doxorubicin (DOX) into nanocarriers to enhance its selective targeting to cancer cells and reduce 
systemic toxicity. The drug was incorporated into nanoparticle formulation, with varying concentrations to assess its 
impact on drug release profiles and therapeutic efficacy. 
 

2.3 Detailed Drug Profile: Doxorubicin (DOX) 

Doxorubicin (DOX), an anthracycline antibiotic, is a widely used chemotherapeutic agent for cancer treatment. Despite its 
broad spectrum of activity, it is limited by side effects, particularly cardiotoxicity. This drug profile covers its 
pharmacology, mechanism of action, clinical uses, and current developments. 
 

2.4 Chemical Structure 

 
Chemical Name: Doxorubicin hydrochloride 
IUPAC Name: (1S,2S,5S,7S,10S,11S,12S,13S,14S,16R,18S,19S)-2,5,10,11,13,16,18,19-Octahydroxy-3,7,13,20-tetrahydroxy-
5-[(3S,4S,5S,6R)-4-hydroxy-5-methoxy-6-methyl-tetrahydro-2H-pyran-3-yl]-14H-8-oxopyrido[4,3-d]pyrimidin-14-one 
Molecular Formula: C₂₆H₁₉NO₁₃ 
Molecular Weight: 579.0 g/mol 
 
Doxorubicin is a DNA-intercalating agent that inhibits the enzyme topoisomerase II, causing DNA breaks and preventing 
proper DNA repair. This leads to apoptosis in rapidly dividing cancer cells and generates reactive oxygen species (ROS), 
contributing to oxidative damage. DOX is used in the treatment of various cancers, either alone or in combination with 
other chemotherapeutic agents. Common indications include breast cancer, ovarian cancer, leukemia and lymphoma, 
sarcoma, gastric cancer, endometrial cancer, lung cancer, and bladder cancer. DOX is commonly used in combination with 
other chemotherapeutic agents to enhance its efficacy. Understanding DOX's pharmacokinetics is crucial for optimizing its 
therapeutic use and minimizing side effects. DOX is typically administered intravenously due to its poor oral 
bioavailability. Its distribution is widespread and primarily excreted in the bile and urine. The standard adult dose of DOX 
is typically 60-75 mg/m², administered intravenously every 21-28 days. Doses may be adjusted based on patient 
tolerance, renal and hepatic function, and the specific cancer type. DOX is associated with several side effects, including 
cardiotoxicity, myelosuppression, gastrointestinal toxicity, alopecia, extravasation injury, acute leukemia, fatigue, liver 
toxicity, skin reactions, and reproductive toxicity. Careful monitoring during administration is required to minimize these 
side effects. 
 
Doxorubicin (DOX) is a potent chemotherapeutic agent for various cancers, but its side effects, particularly cardiotoxicity, 
can be enhanced by other drugs. Drugs that inhibit the cytochrome P450 enzyme system, such as ketoconazole or 
grapefruit juice, may increase DOX levels and metabolites, leading to increased toxicity. Additionally, drugs that affect 
heart function, such as trastuzumab and cyclophosphamide, can increase the risk of cardiotoxicity. To enhance DOX's 
therapeutic index and reduce side effects, researchers are exploring liposomal formulations, combination therapies, and 
nanoparticle formulations. These strategies aim to improve DOX's efficacy and reduce side effects. An AI-driven 
optimization framework was used to optimize the formulation of nanocarriers, using a Random Forest regression 
algorithm to predict optimal conditions for drug encapsulation efficiency. A deep neural network was employed to identify 
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complex relationships between formulation parameters and drug delivery outcomes. Active targeting of nanocarriers was 
achieved by functionalizing the surface of the nanoparticles with targeting ligands, such as folic acid (FA) and herceptin. 
The conjugation process was optimized to achieve a high ligand-to-nanoparticle ratio while maintaining the structural 
integrity and stability of the nanocarriers. In vitro and in vivo evaluations were conducted to evaluate the anticancer 
efficacy of the nanocarriers. Statistical analysis was performed using one-way ANOVA followed by Tukey’s post-hoc test to 
compare multiple treatment groups. With continued development of targeted and personalized treatment strategies, the 
clinical use of DOX may become more efficient and less toxic in the future. 
 
3. Results and Discussion 
The primary goal is to develop a new nanocarrier technology that can contain anticancer medications. Different 
formulations of doxorubicin (DOX) encapsulating PLGA-based nanoparticles were synthesized according to the materials 
and methods described. Different formulations were created by adjusting factors including the concentration of polymers, 
the ratio of drugs to polymers, and the type of solvent used. 
 
3.1 Formulation of Novel Nanocarriers for Anticancer Drug Delivery 

The primary goal is to develop a new nanocarrier technology that can contain anticancer medications. Different 
formulations of doxorubicin (DOX) encapsulating PLGA-based nanoparticles were synthesized according to the materials 
and methods described. Different formulations were created by adjusting factors including the concentration of polymers, 
the ratio of drugs to polymers, and the type of solvent used. 
 
Table 1: Nanoparticle Characteristics for Different Formulations 
Formulation Polymer 

Concentration 

(%) 

Drug-to-

Polymer 

Ratio 

Average 

Particle 

Size (nm) 

Zeta 

Potential 

(mV) 

Encapsulation 

Efficiency (%) 

Polydispersity 

Index (PDI) 

F1 1.5 1:1 180 ± 15 -24.3 80.5 ± 3.2 0.25 
F2 2.0 1:2 210 ± 12 -22.0 75.3 ± 2.5 0.22 
F3 2.5 1:3 190 ± 10 -20.4 85.0 ± 4.0 0.30 
F4 1.0 1:1 160 ± 9 -26.2 90.0 ± 2.3 0.20 
F5 1.5 1:1 170 ± 8 -23.7 78.7 ± 3.0 0.28 

 
The table below provides an overview of the main features of the various nanoparticle formulations that were created to 
encapsulate DOX. From the first trials, the drug-to-polymer ratio was optimized, and the polymer concentration was 
adjusted between 1.0% and 2.5%. Particle sizes fall into the sweet spot for passive targeting through the Enhanced 
Permeability and Retention (EPR) effect, averaging out to between 160 and 210 nanometers across all formulations. The 
average particle size of F1 is 180 nm, making it well-suited for in vivo applications that target tumor tissues. The steady 
dispersion of nanoparticles is shown by the negative zeta potential values. All of the formulations had good encapsulation 
efficiencies (EEs), but F4 had the best EE of the bunch at 90%, so it clearly encapsulates DOX well. Consistent medication 
administration relies on particles of uniform sizes, as indicated by values closer to 0.2-0.3 on the polydispersity index 
(PDI), a measure of size dispersion. 
 

 
Fig 1: Effect of Polymer Concentration on Particle Size and Zeta Potential 
 
The study demonstrates the relationship between particle size and zeta potential in nanocarrier formulations. The average 
particle size increases with polymer concentration, particularly between formulations F1 and F2, and F3 with higher 
polymer content. F4 has the smallest particle size, possibly due to other formulation characteristics. The zeta potential 
remains stable in suspension, with values between -26.2 mV (F4) and -22.1 mV (F2), indicating sufficient repulsion 
between particles to prevent aggregation. The larger particles in formulations with higher polymer concentrations may be 
due to increased viscosity during preparation. The zeta potential data shows all formulations are stable, with a negative 
value representing electrostatic repulsion, reducing the likelihood of aggregation and ensuring effective drug delivery. 
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3.2: AI-Driven Optimization of Nanocarrier Parameters 

The second goal is to optimise the nanocarrier formulation with the use of artificial intelligence approaches. This will be 
done by predicting the optimal nanoparticle characteristics for better drug encapsulation and release using machine 
learning models like Random Forest and Deep Neural Networks. 
 
Table 2: Predicted vs. Experimental Nanoparticle Parameters 
Predicted 

Formulation 

Particle 

Size 

(nm) 

Zeta 

Potential 

(mV) 

Encapsulation 

Efficiency (%) 

Release 

Rate 

(%) 

Actual 

Particle 

Size 

(nm) 

Actual 

Zeta 

Potential 

(mV) 

Actual 

Encapsulation 

Efficiency (%) 

Actual 

Release 

Rate 

(%) 

Optimized F1 180 ± 10 -23.5 82.0 ± 3.0 45 ± 5 178 ± 12 -22.8 81.5 ± 2.5 46 ± 4 
Optimized F2 205 ± 10 -21.0 78.5 ± 2.0 58 ± 6 208 ± 13 -21.5 79.0 ± 3.0 49 ± 6 
Optimized F3 200 ± 10 -19.5 88.0 ± 2.0 48 ± 5 202 ± 12 -19.8 87.0 ± 2.0 49 ± 7 
Optimized F4 175 ± 8 -25.0 90.5 ± 2.3 52 ± 7 176 ± 9 -24.5 91.0 ± 2.5 53 ± 7 
 
The table compares expected and measured nanoparticle formulations using AI-based models. Results show small 
discrepancies between experimental outcomes and AI-optimized formulas, possibly due to real-world variables or 
experimental variances. The optimized F4 formulation had a particle size of 176 nm, proving the AI method's accuracy. 
After 48 hours, the results confirmed F4’s highest encapsulation efficiency and release rate. 
 

 
Fig 2: Comparison of Predicted and Actual Drug Release Profiles 
 
The study compared four formulations of doxorubicin (DOX)-loaded nanoparticles (F1, F2, F3, and F4) with respect to 
their cumulative drug release characteristics over time. The AI-driven optimization model accurately predicted the drug 
release behavior, with a burst of medication release followed by persistent drug release. The maximum release rate, about 
53% after 48 hours, was demonstrated by optimized F4. The study also found that the targeted nanoparticle formulation 
(F4) had a higher release rate prediction, with a maximum release percentage of around 53%. The slower release profile of 
F1 was also similar to the predicted values, indicating a better regulated release mechanism. The drug release profile was 
affected by polymer concentration and drug-to-polymer ratio. The results suggest that AI-optimized formulations 
successfully imitate anticipated drug release profiles, revealing the controlled release mechanisms of nanoparticles. 
 
3.3: In Vitro and In Vivo Evaluation of Nanocarriers for Anticancer Drug Delivery 

The third objective evaluates the efficacy of the optimized nanocarrier formulations for drug delivery using in vitro and in 
vivo studies. 
 
Table 3: In Vitro Cytotoxicity of Nanocarriers 

Treatment Group Cell Viability (%) (MCF-7) Cell Viability (%) (A549) 

Free DOX 25 ± 3 30 ± 5 
Non-targeted Nanoparticles 35 ± 5 38 ± 6 
Targeted Nanoparticles (F4) 15 ± 4 18 ± 4 

 
You may see the cytotoxicity findings of DOX-loaded targeted and non-targeted nanoparticles in the MCF-7 and A549 cell 
lines for breast cancer and lung cancer, respectively. In this table, out of all the nanoparticles tested, the targeted ones (F4) 
showed the sharpest drop in cell viability, suggesting they were more cytotoxic than the free drug or the ones that weren't 
targeted. The cell viability of both cell lines was 25-30% for free DOX, while it was much lower for targeted nanoparticles 
(F4), coming in at roughly 15-18%. This is because folic acid conjugation increases medication uptake at the tumour site 
by enhancing selective absorption by cancer cells. 
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Fig 3: Comparison of Cytotoxicity in MCF-7 and A549 Cells 
 
A bar chart comparing cell viability in two cell lines, MCF-7 and A549, for free DOX, non-targeted nanoparticles, and 
targeted nanoparticles shows that targeted nanocarriers display the lowest cell viability. This trend suggests that targeted 
nanocarriers, which target cancer cells, greatly improve cell viability absorption of DOX, increasing its anticancer potency. 
The graph also shows that free DOX equals cell viability by 15% in MCF-7 cells and 36% in A549 cells. Non-targeted 
nanoparticles showed higher cell viability (35% in MCF-7 and 58% in A549), while the targeted formulations showed the 
very least viability. The tailored method showed greater efficacy compared to free DOX and non-targeted nanoparticles. 
These nanoparticles were functionalized with folate (Folate-DOX-loaded nanocarriers), improving encapsulation, stability, 
and controlled drug release characteristics. 
 
The tailored method with DOX showed strong cytotoxicity against MCF-7 and A549 cells, with AI-optimized nanoparticles 
showing superior anticancer effects. The targeted nanoparticles were more effective in killing cancer cells, and the AI-
based formulations showed a consistent drug release after 48 hours, however, showing treatment resistance. 
In conclusion, the study shows high tumor growth inhibition in in vivo trials, with a 70% smaller tumor size in AI-modified 
drug formulations compared to traditional methods. Drug delivery mechanisms showed highly efficient tumor-targeting 
clearance, with little toxicity in normal organs. AI-driven optimization improved nanocarrier design, enhancing its ability 
to improve therapeutic efficacy and reduce toxicity. However, challenges remain, including scaling up manufacturing, 
reproducibility of formulations, and moving regulatory hurdles for clinical translation. Long-term toxicity studies are 
needed. 
 

4. Conclusion and Future Directions 

The study discusses the development of an innovative nanocarrier technology for AI-driven targeted delivery of anticancer 
medicines. The research explores how nanocarriers, using PLGA to create a biodegradable structure that encapsulates the 
chemotherapy medication doxorubicin (DOX), form the basis for an improved targeted approach. AI-driven optimization 
models effectively help in optimizing formulation parameters, reducing treatment toxicity, improving drug uptake, and 
targeting efficacy. The study contributes to the development of an AI-based platform for enhancing the formulation of 
anticancer drugs, resulting in more effective cancer therapies. Future studies should explore large-scale, multi-center 
clinical trials, offering real-world outcomes and long-term systemic impacts. The technology shows great potential for 
translation into clinical practice, combining personalized medicine and AI model expansion. 
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