International Journal of Research in Engineering and Management 8 (3) (2025) ; 155-159

International

Content is available at: CRDEEP Journals el
Journal homepage: http://www.crdeepjournal.org/category/journals/ijrem/ Engi,f::;‘:{;’;,:z

Management

International Journal of Research in

Engineering and Management (issn: 2456-1029)
A Peer Reviewed UGC Approved Quarterly Journal

PUBLISHING SINCE 2012

SJIF: 4.45

Research Paper
Development of a Plant Disease Detection and Solution System Using

Convolutional Neural Networks and React Framework: A Summary

Anup Raj, Kafil Aslam1, Neha Bhatt!, Shivam!, Vaibhavi Painuly? and Sharad Pratap Singh31
1-Scholar, Department of Computer Application Tula’s Institute, Dehradun

2-Assistant Professor, Department of Computer Application Tula’s Institute, Dehradun.

3-Assistant Professor, Department of CSE Tula’s Institute, Dehradun

ARTICLE DETAILS ABSTRACT
di hor- Plant diseases pose a significant threat to global agriculture, leading to reduced crop yields
C}(:rregpon. m},lgAut OF:  and substantial economic losses. This project presents a deep learning-based system for
Sharad P Sing plant disease detection and management using Convolutional Neural Networks (CNN). The
system is trained on a labeled dataset comprising thousands of images from multiple plant
Key words:

species including tomato, potato, onion, corn, and apple, covering a wide range of disease
classes. The CNN model demonstrated high accuracy in classifying diseases, enabling early
detection and proactive treatment. The application first verifies the plant species through
image classification, then predicts the disease type and provides scientifically validated
solutions and precautionary measures. To further assist users, the system integrates a
Gemini-powered API for dynamic and contextual treatment suggestions. The system is
scalable, interactive, and designed to support continuous learning and improvement based
on real-world use cases.

Plant Disease Detection,
CNN, Deep Learning,
Machine Learning,
Flask, Web Application,
Agriculture, Al
Solutions, Plant Health
Management.

1. Introduction

Plant diseases are a widespread issue in agriculture, affecting crops of all types and leading to significant yield losses
globally. These diseases can impact plants at any stage of growth, and early diagnosis is essential for timely and effective
treatment. However, due to vague visual symptoms and the unavailability of agricultural experts in rural areas, it becomes
challenging to identify diseases accurately and promptly. With the advancement of deep learning and computer vision,
scalable and automated solutions for plant disease identification have become viable. This paper presents a CNN-based
system that detects multiple diseases across different crops and supports farmers with actionable treatment solutions. The
development of CNNs has revolutionized image classification tasks, enabling precise and automated analysis of plant leaf
images. The goal of this project is to design a comprehensive solution that not only detects crop diseases but also provides
context-specific precautionary and remedial actions. By leveraging deep learning, the system bridges the gap between
limited agricultural support and real-time field diagnosis.

New Plant Diseases Dataset '

S d

Fig 1: Dataset of Different Plant Leaves

1Author can be contacted at: Department of Computer Application Tula’s Institute, Dehradun

Received: 20-05-2025; Sent for Review on: 27-05- 2024; Draft sent to Author for corrections: 10-06-2025; Accepted on: 12-06-2025; Online Available from
25-06-2025

DOI: 10.13140/RG.2.2.27108.90243

IJREM: -8895/© 2025 CRDEEP Journals. All Rights Reserved.



http://dx.doi.org/10.13140/RG.2.2.27108.90243

Singh et. al, International Journal of Research in Engineering and Management 8 (3) (2025) 155-159

This research implements a disease detection system for several crops—namely tomato, potato, onion, corn, and
more—using CNN[22]. It integrates a user-friendly interface and deliver detailed solutions. The model predicts the type of
disease and verifies the plant species before proceeding, ensuring prediction accuracy and reliability. Users receive
preventive tips, chemical or organic remedies, and in some cases, dynamic solutions powered by the Gemini API[24].
Dataset: The datasets are collected from Kaggle and other public repositories, comprising thousands of leaf images across
different plant types and disease categories. Each dataset is carefully curated with high-quality, well-labeled images.
Preprocessing steps such as resizing, normalization, and augmentations (rotation, flipping, zooming) are applied to
increase the model's generalization and robustness to perform well in diverse environments.

2.Literature Review
Recent advances in deep learning have significantly enhanced image-based diagnostics in agriculture. Convolutional
Neural Networks (CNNs), inspired by the human visual system, effectively extract spatial patterns and have outperformed

model = Sequential([

Conv ), activation='relu’, input_shape=(img_size[®], img_size[1], 3)),

MaxPooli

Conv2D( 6 activation="relu'),

MaxPooling2|

Conv2D(1 activation="relu'),

MaxPooling2i

Flatten(),

Dense(128, activation='relu'),

Dropout(@.5

Dense(train_generator.num_classes, activation='softmax
1)

model.compile(optimi m*, : c opy ', metrics=

traditional image processing methods. Popular architectures like ResNet, VGGNet, and InceptionNet have been widely
applied to classify plant diseases, demonstrating strong accuracy in controlled settings.However, existing models face key
challenges: limited datasets, inter-class visual similarity, and dataset bias reduce their generalization capabilities.
Moreover, most past approaches emphasize accuracy but overlook real-world usability, lacking deployment-ready systems
or user interaction layers. They often fail to verify if the input plant matches the predicted class, which can lead to
misdiagnosis—especially when models are trained only on a specific crop. Our model addresses these issues by
incorporating a plant verification step before prediction, ensuring the disease is matched only within the correct plant
category. Our system also features a web-based interface using Flask, allowing real-time image upload, classification, and
solution suggestions tailored per disease. Unlike previous models, which end at prediction, our system integrates dynamic
treatment solutions via the Gemini API, offering up-to-date remedies and precautions. This creates a comprehensive end-
to-end platform that goes beyond detection to provide actionable guidance, closing the loop between diagnosis and
response. By combining strong deep learning foundations with practical deployment, plant verification, and Al-powered
solutions, our model overcomes the limitations of earlier research and makes plant disease diagnosis more accessible and
reliable.

This research aims to develop a CNN-based multi-class classification model for the accurate diagnosis of plant diseases
across multiple species—tomato, potato, onion, corn, and more—with support for multiple disease classes per plant.
The model is trained on a structured, labeled image dataset, with data augmentation techniques (rotation, flipping,
zooming) applied to enhance generalization.

RET T IR

gt & fa o I vgar &

W d

The system extracts spatial features such as color, texture, and lesion patterns using deep convolutional layers to classify
input leaf images into corresponding disease categories. Performance is quantitatively evaluated using accuracy, precision,
recall, and F1-score.To reduce inter-class and inter-species misclassification, the model includes a pre-classification plant
verification step. The complete solution is deployed as a Flask-based web application, allowing users to upload images for
real-time disease detection. Integrated with the Gemini AP], the system provides contextual remedies and

preventive solutions, delivering an end-to-end intelligent plant health management platform.

3. Methodology

Model architecture: The CNN architecture is designed to have an optimal balance between complexity and computational
efficiency. These include: Input Layer: Processes plant leaf images resized uniformly (e.g., 128x128x3) to ensure
consistency across the dataset. Convolutional Layers: Apply filters to extract relevant features such as texture, color
variation, and disease patterns, followed by ReLU activation to introduce non-linearity. Pooling layers: Apply max-pooling
to reduce the spatial size and the computation involved. Fully connected layer: Combine high-level features extracted from

156



Singh et. al, International Journal of Research in Engineering and Management 8 (3) (2025) 155-159

convolutional layers and map them to classification categories. Output Layer A Softmax activation function is applied for
multi-class classification of plant diseases and healthy cases. Training Process: The model was developed using Tensor
Flow and Keras. Training parameters include: Optimizer: Adam with a learning rate of 0.001. Loss Function: Categorical
Crossentropy. The regularization techniques used dropout layers with a rate of 0.5 and L2 regularization to control
overfitting. Early stopping was based on the validation loss to optimize the training time. Evaluation Metrics: The following
metrics were used to evaluate performance: Accuracy : Accuracy Total Correct prediction. Precision: True positive
instances in positive predictions. Remember: True Positives-actual positive correctly predicted instances. F1-Score:
Harmonic mean of precision and recall. The classes were divided into an 80% training set and a 20% validation set.

Framework Integration:

The The web-based system was developed using the Flask framework. The application features the following components:

Image Upload: Allows users to upload a plant leaf image for classification Real-time Results: Displays the predicted disease class
along with a score. Treatment Prescriptions: Provides treatment and prevention measures based on the predicted plant disease
class using Gemini API integration The trained CNN model was saved in HDF5 (.h5) format and integrated into the backend using
TensorFlow. The frontend was developed using HTML, CSS, and JavaScript, offering a clean and interactive user interface.

Implementation:

Data Preprocessing: The dataset was loaded using TensorFlow’s Image Data Generator to enable efficient image
augmentation and batching. Augmentation Techniques: Real-world variability was simulated using transformations like
rotation, flipping, zooming, and width/height shifts. Data Splitting: The dataset was split into 80% training and 20%
validation sets to ensure proper generalization.

Applcation of cropping
Hher, aegmentation e

3
Dataset

Image
Leaf image dataset pre-proc
Leaf image dataset pre-processing
Y l
Test st Training st Validation st

|

Image acquisition

r

006
-
608

Training Training &

of decp learning model validation datasets

Fig 2 : Gemini API used for solutions
The proposed CNN-based system effectively classifies multiple plant leaf diseases with high accuracy (94%), showcasing
strong feature extraction and generalization capabilities. Its integration with Flask ensures easy deployment and
accessibility through a user-friendly web interface.
Model Training
Strengths:
High Accuracy: The 94% validation accuracy reflects the robustness of the model.
Itis an easy-to-use web interface accessible even to non-technical users.

157



Singhet. al, International Journal of Research in Engineering and Management 8 (3) (2025) 155-159

Layer Construction: Sequential CNN layers were built using Keras.

Initial experiments established the number of convolutional layers to be 4 and kernel sizes to be 3x3.

The model was trained on the augmented data in mini-batches Initial weights were randomly initialized.

Validation Monitoring: Loss and accuracy metrics were logged at every epoch. Overfitting potential was monitored with the
help of early stopping.

Deployment Architecture

Model Serialization: The trained model was saved in TensorFlow's .h5 format, making it compatible with Flask-based backend
integration. API Development: RESTful APIs were built using Flask to handle image uploads and return classification results
dynamically. Frontend Integration: The Ul was developed using HTML, CSS, and JavaScript. Users can upload plant leaf
images, receive real-time predictions, and view corresponding treatment suggestions powered by the Gemini API.

4. Result:

Model Performance: On the validation set, this trained CNN was able to have the following:

Validation Accuracy: 94%

Precision, Recall, and F1-Score: All eight classes have high values, which indicates balanced performance.

Confusion Matrix Analysis: The confusion matrix showed minimal misclassifications. Minor overlaps existed between
visually similar classes—for instance, Early Blight and Late Blight in tomatoes. These could be further reduced with
advanced approaches like attention mechanisms or transfer learning in future iterations.

Example Predictions

Input: Leaf image of infected potato.

Predicted Class: Potato - Early Blight. Confidence: 96%

Input: Tomato leaf image with visible disease patches.

Predicted Class: Tomato - Leaf Mold. Confidence: 94%

Statistical Metrics: The statistical analysis of model performance Included:
Accuracy per Class: Above 90% for all classes.

Scalability: New diseases or plant types can be added easily.

Limitations:

Dataset Diversity: Needs broader image variety from real farm settings.
Explainability: No visual cues on what influenced predictions.
Real-life Validations: Requires testing on live field images.

Future Work:

Dataset Expansion: Add more diverse and real-world images.

Explainable Al: Combine with Grad-CAM or SHAP to visualize what is causing certain features to influence the prediction.
Mobile application development: Expand the system on mobile platforms for the real-time, on-the-go diagnosis.

Connect with agricultural systems and consult experts for refinement.

References

Chollet, F., Deep Learning with Python, Manning Publications, 2021.

Khandagale, H. P., Patil, S., Gavali, V. S., Chavan, S. V., Halkarnikar, P. P., & Meshram, P. A. (2025). Design and Implementation
of FourCropNet: A CNN-Based System for Efficient Multi-Crop Disease Detection and Management. arXiv preprint
arXiv:2503.08348.

He, K., Zhang, X, Ren, S., and Sun, ], Deep Residual Learning for Image Recognition, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 770-778, 2016.

Kaggle, Plant Dataset, Retrieved from https://www.kaggle.com.

Mustofa, S., Munna, M. M. H,, Emon, Y. R,, Rabbany, G., & Ahad, M. T. (2023). A comprehensive review on Plant Leaf Disease

158


http://www.kaggle.com/

Singh et. al, International Journal of Research in Engineering and Management 8 (3) (2025) 155-159

detection using Deep learning. arXiv preprint arXiv:2308.14087.

LeCun, Y., Bengio, Y., and Hinton, G., Deep Learning, Nature, 521(7553), 436-444, 2015.

Abade, A. S, Ferreira, P. A,, & Vidal, F. B. (2020). Plant Diseases recognition on images using Convolutional Neural Networks:
A Systematic Review. arXiv preprint arXiv:2009.04365.

Thapa, R., Snavely, N., Belongie, S., & Khan, A. (2020). The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples. arXiv preprint arXiv:2004.11958.arXiv

159


https://arxiv.org/abs/2004.11958?utm_source=chatgpt.com

	2-Assistant Professor, Department of Computer Application  Tula’s Institute, Dehradun.
	2.Literature Review
	3. Methodology
	Model architecture: The CNN architecture is designed to have an optimal balance between complexity and computational efficiency. These include: Input Layer: Processes plant leaf images resized uniformly (e.g., 128×128×3) to ensure consistency across t...
	Framework Integration:
	Model Training
	Strengths:
	Deployment Architecture
	Model Serialization: The trained model was saved in TensorFlow's .h5 format, making it compatible with Flask-based backend integration. API Development: RESTful APIs were built using Flask to handle image uploads and return classification results dyna...
	Limitations:
	Future Work:
	Dataset Expansion:  Add more diverse and real-world images.
	Explainable AI: Combine with Grad-CAM or SHAP to visualize what is causing certain features to influence the prediction.
	Mobile application development: Expand the system on mobile platforms for the real-time, on-the-go diagnosis.
	Connect with agricultural systems and consult experts for refinement.
	Fig 3:  Different Datasets
	References



